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Deontic logic is the formal study of the normative concepts of obligation,
permission, and prohibition. These concepts and their logical relationships to
one another are distinguished from value concepts such as goodness and badness
(or evil), as well as from such agent-based concepts as act, choice, decision,
desire, freedom, and will.
A deontic logic is not itself an ethical theory that tells us what in fact is

permitted, obligatory, or forbidden, but it is, or should be, part of such a theory.
A complete ethical or moral theory would encompass the logic of all of these
di¤erent concepts, and not just the normative ones. But just as there can be
di¤erent ethical theories, so too there can be di¤erent deontic logics. The study
of the di¤erent deontic logics, in other words, is part of what is more properly
called meta-ethics.
The normative concepts of obligation and permission are similar in many

respects to the modal concepts of necessity and possibility. In fact the normative
concepts are also modal concepts themselves. A deontic logic, in other words,
is a modal logic where instead of the unary formula (sentential) operators for
the alethic modalities necessity and possibility, namely � and �, we have unary
operators for the deontological modalities of obligation and permission, namely
O and P.
Alethic logic deals with what is the case (truth) or not the case (falsehood),

and alethic modal logic deals with what is necessarily or possibly the case as
well as with what is the case or not the case. Deontic modal logic deals with
what is obligatory, or permitted, or forbidden to be the case as well as with
what is or is not the case.
We will understand formulas, i.e., the sentential (propositional) forms of

deontic logic, to stand for propositions, or states of a¤airs, or for actions in the
case of a background agency and action theory, except that this usually requires
a development of the logic of actions as well, which we will not go into here.

1 Logical Grammar

The logical grammar for sentential (propositional) deontic logic consists of the
unary formula operator for negation, :, and the binary formula operator for the
(material) conditional !. The (material) biconditional $, conjunction ^, and

�These notes are based on a course I gave on modal logic in the late 1960s at the State
University of California at San Francisco.
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disjunction _ are binary operators that are assumed to be de�ned in the usual
way in terms of negation and the (material) conditional operators.
We will use the lower case Greek letters '; ; � as metalanguage variables

that range over the formulas of our object language.
We read the deontic operators O and P as follows:

O' : It is obligatory that ' (or one is obligated to do ').
P' :It is permitted that ' (or one is permitted to do '):

With : as the sign for negation, we give :P' a special reading as well:

:P' : It is forbidden (or prohibited) that ' (or one is forbidden to do '),

which we can symbolize more simply as F', i.e.,

F'$ :P'.

As we will see, because :P' is equivalent to O:', we also have:

F'$ O:'.

We will also assume that the permission operator is de�ned in terms of the
obligation operator as follows:

P'$ :O:'.

That is, for ' to be permitted means that it is not the case that :' is obligatory.
This means that we take only O, :, and ! as primitive, with P, F , $, ^, and
_ assumed to be de�ned as abbreviatory signs.
Note: A unary formula operator applies to one formula� i.e., a sentence

form� and results in a formula. A binary formula operator, such as !, applies
to two formulas and results in a formula.
Where ' and  are arbitrary formulas (sentence forms), these operators are

read as follows:
:' : It is not the case that ':
('!  ) : If ', then  :
('$  ) : ' if, and only if,  :
(' ^  ) : ' and  :
(' _  ) : ' or  .

We will assume a potentially in�nite list of sentential (propositional) variables
p; q; r; p1; q1:::; pn; ::: for all integers n. We inductively de�ne the formulas of
deontic logic as the smallest set of formulas containing the sentential variables
and such that :', O', and ('!  ) belong to the set whenever '; belong to
the set.
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2 Systems of Deontic Logic

There are a number of possible choices that one can make in regard to what
deontic logic to adopt. Much will depend on various meta-ethical considerations.
What we will do here is consider the principle theses of di¤erent deontic logics
and leave open the choice of which system to adopt. Because of the similarity of
the concepts of permission and obligation with the concepts of possibility and
necessity, our methodology will be to note each of the principle theses of alethic
modal logic and then consider whether or not the deontic counterparts of these
theses are acceptable principles of deontic logic.
We will assume that all tautologous formulas (as based on the formulas

of sentential deontic logic) are valid in all deontic logics, and hence, because
tautologies are decidable, we will assume all tautologies to be derivable from a
single axiom schema of every system of deontic logic considered here.
We will also assume that all of the systems of sentential deontic logic have

the same two primitive inference rules, namely, modus ponens, (MP ), and the
rule, (O), that what is provable in deontic logic is obligatory:

Modus ponens (MP ): If ` ' and ` ('!  ), then `  :
Obligatory (O): If ` ', the ` O':
The symbol ` used above is read as �is provable�. For a particular logistic

system � , we read `� as �is provable in �. If �[ f'g is a set of formulas, then
we take � ` ' to mean that � yields ' in �, i.e., that ' is derivable from a
(�nite) number of formulas in � as premises.
Because the axioms and rules of all of the systems considered here will be

stated schematically, the rule of uniform substitution (US) of a formula for a
propositional variable is derivable in each system �:

Uniform substitution (US): If `� ', then `� '(pn= ):
The systems of alethic modal logic that we mention here can be ordered in

terms of two lines of the subsystem relation:

Kr vM v S4 v S4:2 v S4:3 v S5;
Kr vM v Br v S5:

The deontic logics that are counterparts of these alethic modal logics are
ordered similarly, with the inclusion of one further system, sometimes known as
standard deontic logic, which we will call D:

DKr v D v DM v DS4 v DS4:2 v DS4:3 v DS5;
DKr v D v DM v DBr v DS5:

Finally, because all of the systems considered here will include the principles
of DKr, the interchange rule that allows provable formulas to be interchanged
in more complex formulas is also derivable in deontic logic.
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3 The Deontic Logic DKr

The minimal system of alethic modal logic is the system Kr, which, in addition
to the axioms for tautologies, consists of a single axiom for the distribution of
� over a conditional, i.e., the thesis that if a conditional is necessary, then the
antecedent is nessary only if the consequent is as well. The deontic counterpart
of this thesis, namely that if a conditional is obligatory then the antecedent is
obligatory only if the consequent is as well, is clearly an acceptable thesis of
deontic logic. Accordingly, the axioms of the minimal system DKr of deontic
logic can be described as follows:

Axiom1: `DKr ' if ' is a tautology,

Axiom 2: `DKr O('!  )! (O'! O ).
Axiom 2, the principle deontic thesis of DKr, and the rule (O) lead to what

some consider another oddity if not a paradox. This is the fact `DKr O' !
O(' _  ). In other words because ' ! ' _  is a tautology, then, by the
rule (O), `DKr O(' ! ' _  ), and therefore by axiom 2 and modus ponens,
`DKr O' ! O(' _  ). (This is sometimes called Ross�s paradox, after the
Danish philosopher of law, Alf Ross.)
This theorem is said to be odd, even if not actually paradoxical, because,

e.g., it then follows that if it ought to be that we love our neighbor, then it
ought to be that we either love our neighbor or hate our neighbor. Hence, given
that we ought to love our neighbors, then it follows that we ought to love our
neighbors or hate them.
But is this really odd? Given that a proposition p is true, it then follows

that p _ (p ^ :p) is also true. The truth of p in this case conveys no truth
to the contradiction (p ^ :p), even though the disjunction p _ (p ^ :p) is also
true. Similarly, the obligation to love our neighbors conveys no obligation to
hate our neighbors; and in fact given a prohibition against hating our neighbors,
the obligation to hate our neighbors would then be refutable just as (p ^ :p) is
refutable.
There is said to be a more serious problem with axiom 2 and the rule (O),

however. In particular, they are said to lead to the Good Samaritan Para-
dox, which we can describe as follows:

If the good Samaritan helps Paul who has been robbed, then
Paul has been robbed. (A tautology)
Therefore, It ought to be that (if the good Samaritan helps Paul

who has been robbed, then Paul has been robbed). (By the rule
(O))
But it ought to be that the good Samaritan helps Paul who has

been robbed. (Assumption)
Therefore, it ought to be that Paul has been robbed. (By axiom

2 and modus ponens).
But clearly this conclusion is false; hence we have a contradiction.
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We could replace axiom 2 by the weaker rule:

If ` '!  , then ` O'! O :

In terms of action theory the rule states:

If doing ' logically implies doing  , then
one ought to do ' only if one ought to do  .

Unfortunately, the Good Samaritan Paradox is still derivable on the basis of
this weaker rule even without axiom 2 or the rule (O).
But there is nothing really left to deontic logic if we give up axiom 2 and

the rule (O).
Question: How can we escape the Good Samaritan Paradox?
If we accept axiom 2 and the rule (O), then it is only the assumption (premise

3) that can be challenged. Is it really true that it ought to be that the Good
Samaritan helps Paul who has been robbed?
Let us note that logically the sentence �The Good Samaritan helps Paul who

has been robbed�is really a conjunction, namely the conjunction that Paul has
been robbed and that the Good Samaritan helps him (Paul). The assumption
then is really saying:

It ought to be that (Paul has been robbed and the Good Samaritan
helps him),

which by a theorem of DKr, namely, O(' ^  ) $ O' ^ O , is equivalent to
saying:

It ought to be that Paul has been robbed and it ought to be that the
Good Samaritan helps him.

In other words the assumption, premise 3, implicitly assumes the conclusion
that we reject. The solution is that the premise is not true after all.
Note that If instead of Paul we referred simply to someone, i.e., if the as-

sumption were replaced by the di¤erent statement that it ought to be the case
that the Good Samaritan helps someone who has been robbed, then even though
it is less obvious that the assumption implicitly assumes that it ought to be that
someone is robbed, nevertheless that in fact is what is being assumed and hence
again there is no paradox except our assuming what we are rejecting.
Note: Perhaps a more interesting version of the paradox can be formulated

in terms the de re-de dicto distinction with respect to the deontic operators,
i.e., in terms of variable-binding operators reaching into a deontic context. The
assumption, for example, might be restated as a de re obligation of the Good
Samaritan, namely that he ought to help Paul:

The Good Samaritan is (an x) such that It ought to be that [he (x)
helps Paul who has been robbed].
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Evaluating this version of the assumption would take us into quanti�ed de-
ontic logic, which we are not doing here. But we might note that stated this way
the premise may depend on the circumstances of the situation. Before the good
Samaritan found the person who was robbed, others had passed him by without
helping him. Had one of those helped the person who was robbed, there would
then be no need, and hence no obligation, for the good Samaritan to help him.
Also, what if the good Samaritan has no resources by which to help the person
who is robbed? What if he is blind and does not even know that a person who
has been robbed is near him. Does the de re obligation apply even in these
cases?
It is important to note here that it may be obligatory that someone do ',

without it being the case that some particular person has a de re obligation to
do '. At a beach by the sea crowded with people where a child is drowning and
there is no lifeguard, it is obligatory that someone try to rescue the child; but
it does not follow that there is someone who is such that he or she ought to try
to rescue the child.
The idea that a de re obligation may depend on circumstances in di¤erent

situations suggests that a conditional binary concept of obligation and similarly
of permission may be more appropriate than our monadic concepts. The formula
O('= ), e.g., might be read as �it is obligatory that ' given the circumstances
that  �. We will not pursue this suggestion here.
Despite being the minimal system of deontic logic, there are a number of

theses provable inDKr that indicate some of the important connections between
the standard sentential connectives and the deontic operators.

1. `DKr P'$ :O:';

2. `DKr :O'$ P:';

3. `DKr O'$ :P:';

4. `DKr :P'$ O:':

5. `DKr O(' ^  )$ O' ^ O ;

6. `DKr P(' _  )$ P' _ P ;

7. `DKr O('!  )! (P'! P );

8. `DKr O('$  )! (O'$ O );

9. `DKr O('$  )! (P'$ P );

10. `DKr :P'! O('!  );

11. `DKr O ! O('!  );

12. `DKr :P'$ O('!  ) ^ O('! : );

13. `DKr O' _ O ! O(' _  );

6



14. `DKr P(' ^  )! P' ^ P ;

15. `DKr (P'! O )! O('!  );

16. `DKr P' ^ O ! P(' ^  ),

17. `DKr P('!  )$ (O'! P );

18. `DKr F(' _  )$ F' ^ F .

Note: Theorem 6 tells us that permission distributes over a disjunction,
i.e., that a disjunctive permission is equivalent to a disjunction of permissions.
A disjunctive permission does not imply a conjunction of permissions, however.
There is another notion, which is sometimes called �free choice�permission, for
which a disjunctive permission does imply (and is equivalent to) a conjunction
of permissions. For example, when it is permitted that you vote for candidate
A or vote for candidate B, then it is permitted that you vote for candidate A
and it is permitted that you vote for candidate B.
But because p ! p _ (p ^ :p) is a tautology, then, by the rule (O), O[p !

p _ (p ^ :p)] is provable, and therefore, by axiom 2 and theorem 7, Pp !
P(p _ [p ^ :p]) is also provable. Accordingly, if we were to allow free-choice
permission, we would have Pp ! P(p ^ :p) as provable, from which it would
follow that nothing is permitted on pain otherwise of obtaining the contradiction
P(p ^ :p) ^ :P(p ^ :p).

4 The Deontic Logic D

The system DKr is of interest because it is minimal in the sense that the alethic
modal logic Kr is minimal; in particular both strongly characterize the class
of all world systems, i.e., ordered systems of possible worlds. A real di¤erence
between deontic and alethic modal logic begins with the deontic counterpart of
the alethic modal logic M , the principle thesis of which is �' ! ', i.e., that
what is necessary is the case.
Of course, the counterpart of this thesis, namely O' ! ', is not a valid

thesis of deontic logic. It is not inconsistent because it could possibly be true
(for all instances of '), but only in an ideal world where whatever is obligatory
is in fact the case. Given quanti�cation over propositions or states of a¤airs, we
could take this characterization of an ideal world as a de�nition:

De�nition: A possible worldW is ethically ideal if, and only if, for all formulas
', (O' ! ') is true in W . Or in terms of actions, a world W is ideal i¤
every action that ought to be done in W is in fact done in W .

The relevant deontic counterpart of the alethic modal thesis �'! ' is the
weaker thesis that what is obligatory is permitted : O'! P', which is equiv-
alent to the thesis that there cannot be con�icting obligations: :(O' ^ O:'),
i.e., one cannot be obligated to both do and not do 'We will refer to the system
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that results by adding this principle to those of DKr as the deontic logic D. As
we will see, although DKr (and Kr) strongly characterize the class of all world
systems, the deontic logic D strongly characterizes the class of all deontic world
systems, which we will characterize later.
The axioms of D are the following:

Axiom1: `DM ' if ' is a tautology,

Axiom 2: `DM O('!  )! (O'! O ).
Axiom 3: `DM O'! P'.

5 The Deontic Logic DM

Another weaker counterpart of the M thesis �' ! ' is the claim it ought to
be that what ought to be is the case, i.e., O(O' ! '). In other words, even
though the real world is not ethically ideal, nevertheless it ought to be ideal.
Adding this principle to D gives us the deontic logic DM . The axioms of

DM are the then following:

Axiom1: `DM ' if ' is a tautology,

Axiom 2: `DM O('!  )! (O'! O ).
Axiom 3: `DM O'! P'.
Axiom 4: `DM O(O'! ').

Of course, because the axioms and inference rules of DKr are axioms and
inference rules of DM , it follows that all of the theorems of DKr are theorems
of DM .
The following are theorems that are provable in DM but not in DKr, and as

such they indicate new connections between the sentential and deontic operators:

1. `DM O('! P').

2. `DM OO'! O'.

3. `DM (P'! P )! P('!  ):

In terms of actions, we can read theorem 3 as: if doing ' is permitted only
if doing  is permitted, then it is permitted that one does ' only if one does  .
There is a question about the principle thesis ofDM , i.e., the thesisO(O'!

'), which, as noted, says in e¤ect that the real world ought to be ideal. The
question is: Can there be free will in an ethically ideal world where what ought
to be the case is the case, and hence where what is forbidden is not the case?
Does not free will require permitting something that is forbidden to be the case,
i.e., in symbols P(:P' ^ '), which is not the same thing as permitting us to
do something that is forbidden, in symbols P' ^ :P', which is contradictory.
Permitting that something that is forbidden be the case, i.e., P(:P' ^ '),

suggests that we are free to do ' even though it is forbidden. Note that the
formula P(:P' ^ ') is consistent in the deontic logic D, and hence not at all
like the contradictory formula P' ^ :P'.
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But P(:P' ^ ') is disprovable in DM , its negation being equivalent to
O(O:' ! :'), which states that it ought to be that what is forbidden is not
the case. Can one have free will in an ethically ideal world? If not, then ought
the real world be ethically ideal? Does free will require that it be permitted
that we can do something that is forbidden in the sense of P(:P' ^ ')?
Probably the best approach toward answering these questions might be to

consider a wider framework of mixed modalities where in addition to the deontic
logic DM in which :P(:P' ^ ') is a theorem we also have an alethic modal
logic in which �(:P' ^ ') is consistent if not also provable. Thus although
:P(:P' ^ ') says that it is forbidden that we do something that is forbidden,
the formula �(:P' ^ ') says that we can do something that is forbidden, which
suggests that we have free will to do so. We will not go into this mixed approach
here, however.

6 The Deontic Logic DBr

The alethic modal logic Br has as its special axiom the thesis that what is the
case is necessarily possible: ' ! ��'. The deontic counterpart is the claim
that what is the case (no matter how horrible or evil) ought to be permitted,
which is obviously false, and therefore unacceptable. A revised counterpart is
that in an ideal world it ought to be that what is the case ought to be permitted.
The relevant alternative, in other words, is: O(' ! OP'). We will retain the
principle thesis of DM , stipulating that an ideal world ought to be the case,
which is implicitly assumed by the DBr thesis O('! OP'), which means that
DBr is therefore an extension of DM .

Axiom1: `DBr ' if ' is a tautology,

Axiom 2: `DBr O('!  )! (O'! O ).
Axiom 3: `DBr O'! P'.
Axiom 4: `DBr O(O'! ').

Axiom 5: `DBr O('! OP'):
The following are theorems of DBr not provable in DM . These theorems

indicate more complex nested connections between the deontic operators:

1. `DBr OPO'! O':

2. `DBr O(PO'! OP'):

7 The Deontic Logic DS4

The principle thesis of the alethic modal logic S4 is the thesis that what is
necessary is not contingently necessary but necessarily necessary: �'! ��'.
The deontic counterpart is the thesis that that one does what one ought to do
only if one ought to do what one ought to do: O'! OO'. We will retain as part
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of DS4 the principle thesis of DM , namely O(O'! '), but not O('! OP'),
the principle thesis of DBr.
Axiom1: `DS4 ' if ' is a tautology,

Axiom 2: `DS4 O('!  )! (O'! O ).
Axiom 3: `DS4 O'! P'.
Axiom 4: `DS4 O(O'! ').

Axiom 5: `DS4 O'! OO'.
Some theorems of DS4 that indicate new logical nested connections between

the sentential and deontic operators:

1. `DS4 O'$ OO'.

2. `DS4 P'$ PP'.

3. `DS4 O'$ OPO'.

4. `DS4 O('!  )! O(O'! O ).

5. `DS4 O'! PO'.

8 The Deontic Logic DS4.2

In all of the systems considered so far it is consistent to have a state of a¤airs '
be both permitted to be obligatory and permitted to be forbidden, i.e., PO' ^
PO:' might possibly be true in the real world as determined by each of the
previous deontic logics. To exclude PO'^PO:', which says that ' is permitted
to be both obligatory and forbidden, it su¢ ces to add to DS4 the deontic thesis
PO' ! OP', which is equivalent to the negation of PO' ^ PO:'. The
new thesis PO' ! OP' says that ' is permitted to be obligatory only if it
is obligatory that it be permitted, and hence only if it is not permitted to be
forbidden.
Adding PO' ! OP' to the DS4 results in the counterpart of the alethic

modal logic S4:2. The modal thesis of S4:2, namely ��' ! ��', allows a
commutation of �� with �� in one direction. Adding the deontic counterpart
of this modal thesis to DS4 gives us the deontic logic DS4:2.

Axiom1: `DS4:2 ' if ' is a tautology,

Axiom 2: `DS4:2 O('!  )! (O'! O ).
Axiom 3: `DS4:2 O'! P'.
Axiom 4: `DS4:2 O(O'! ').

Axiom 5: `DS4:2 O'! OO'.
Axiom 6: `DS4:2 PO'! OP'.
The following are theorems of DS4:2 indicating nested laws regarding the

deontic operators not provable in previous systems. Theorem 2, in particular,
says that ' is permitted to be obligatory only if it is permitted simpliciter :
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1. `DS4:2 PO'! OPO'.

2. `DS4:2 PO'! P'.

9 The Deontic Logic DS4.3

In addition to allowing states of a¤airs that are both permitted to be obligatory
and permitted to be forbidden, the deontic logics DBr, and DS4 also allow
that there are states of a¤airs ' and  that are both permissible and yet it is
forbidden that one be the case while the other is permitted. That is, for some
formulas '; ,

P' ^ P ^ :P(' ^ P ) ^ :P( ^ P');

is consistent. This formula, by theorem 6 for DKr, is equivalent to

P' ^ P ^ :P[(' ^ P ) _ ( ^ P')];

which is consistent even in DS4:2. It is not clear what meta-ethical issues would
warrant allowing for this possibility. In any case, if we wish to reject it what is
needed is the deontic correlate of the principle thesis of the modal logic S4:3,
namely:

P' ^ P ! P[(' ^ P ) _ ( ^ P')]:

Adding this thesis to DS4 gives us DS4:3.
Axiom1: `DS4:3 ' if ' is a tautology,

Axiom 2: `DS4:3 O('!  )! (O'! O ).
Axiom 3: `DS4:3 O'! P'.
Axiom 4: `DS4:3 O(O'! ').

Axiom 5: `DS4:3 O'! OO'.
Axiom 6: `DS4:3 P' ^ P ! P[(' ^ P ) _ ( ^ P')].
The following thesis of DS4:2 is a theorem of DS4:3, which shows that

DS4:3 is an extension of DS4:2:
`DS4:3 PO'! OP'.
Note: Although DS4:2 is a proper subsystem of DS4:3, nevertheless it

turns out that the result of adding the principle thesis of DS4:2 to DBr+DS4
is equivalent to DBr +DS4:3.

Theorem: DBr +DS4:2 is equivalent to DBr +DS4:3.

10 The Deontic Logic DS5

The �nal thesis of alethic modal logic to consider is the principle that what is
possible is necessarily possible. The deontic counterpart of this is the thesis that
what is permissible ought to be permissible: P'! OP'. In alethic modal logic
the S4 thesis �'! ��' is provable in S5; but the proof depends on the modal

11



thesis �'! ' of M , the deontic counterpart of which is not acceptable, as we
have already noted. As a result, the DS4 thesis O'! OO' is not provable in
DS5, which is why we retain it here as an axiom of DS5:
Axiom1: `DS5 ' if ' is a tautology,

Axiom 2: `DS5 O('!  )! (O'! O ).
Axiom 3: `DS5 O'! P'.
Axiom 4: `DS5 P'! OP'.
Axiom 5: `DS5 O'! OO'.
Note that by theorem 15 for DKr and the DS5 axiom 4, the formula O('!

P'), which is equivalent to the DM thesis O(O'! '), is provable in DS5. In
other words, DM is a subsystem of DS5. Similarly, by theorem 15 for DKr
and the DS5 axiom 5, the DBr thesis O('! OP') is provable in DS5. Hence
DBr is a subsystem of DS5 as well. Finally, the principle thesis of DS4:3 (and
therefore of DS4:2 as well) is also provable in DS5. The deontic logic DS5, in
other words, contains all of the previous systems.

1. `DS5 O(O'! ').

2. `DS5 O('! OP').

3. `DS5 O(O'! OP').

4. `DS5 P' ^ P ! P[(' ^ P ) _ ( ^ P')].

Note: The alethic modal logic S5 is well-known to be equivalent to the
combined alethic modal logic Br+S4. The related deontic logics are not equiv-
alent, however. The DS5 axiom P' ! OP' in particular is not provable in
DBr+DS4. What we have instead is the equivalence of DS5 with the combined
deontic logics DBr and DS4:2. Of course, because DS4:3 contains DS4:2, it
follows that DS5 is also equivalent to DBr +DS4:3.

Theorem DS5 is equivalent to both DBr +DS4:2 and DBr +DS4:3.

11 Deontic World Systems

In constructing a possible-worlds semantics for deontic logic we will follow the
way it is commonly done in alethic modal logic. That means we begin with
an ordered collection of possible worlds, which we call a world system. One
world w2 is related to another world w1 in such a system if it is a permissible
alternative to that world, i.e., if what is permissible in w1 is true in w2. The
semantic idea is that a formula of the form P' will be true in w1 if, and only
if, there is a world w2 in which ' is true that is a permissible alternative to w1.
Similarly, O' will be true in a world of the system if, and only if, ' is true in
every world of the system that is a permissible alternative to the given world.
We can represent each possible world on this level of analysis by a truth-

value assignment that assigns to each propositional variable a truth value, truth
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or falsehood. The truth values of conjunctions, disjunctions, conditionals, nega-
tions, etc., are then de�ned in the usual truth-functional manner. Finally the
truth value of a formula of the form O' with respect to such an assignment t is
truth if ' is true in every permissible world (truth-value assignment) alternative
to t, and false otherwise; and a formula of the form P' is true with respect to t
if there is a permissible world (truth-value assignment) alternative to t in which
' is true.

De�nition: A = hR; tk2W i is a world system i¤
1. W is a set of possible worlds,
2. R is a relation on W , i.e., R �W �W ,and
3. for each k in W , tk is a truth-value assignment to the propositional
variables.

Truth in a world system at a given world of that system can be de�ned in
the obvious way. Validity in a world system is then de�nable as truth at every
world in that world system; and validity simpliciter is de�ned as validity in
every world system.
As already noted, the minimal alethic modal logic Kr is complete with

respect to validity simpliciter, and, since there is no di¤erence between KR
and DKr except for having O occur wherever � occurs in a formula, the same
applies to the deontic logic DKr. The minimality of DKr, accordingly, does not
structurally distinguish the deontological modalities O and P from the alethic
modalities of � and �. We will rede�ne the notion of a world system so that
completeness theorems can be shown for the more interesting extensions ofDKr.
We will refer to the rede�ned notion as that of a deontic world system.
In particular, we will assume that there is an initial or �rst possible world

in a deontic world system, which we may consider to be the real world. Each of
the other worlds in such a system are then either permissible alternatives to the
real world or are permissible-alternative descendants of the real world, i.e., they
are permissible worlds of a permissible world, or they are permissible worlds of
permissible worlds that are permissible worlds of the real world, etc.

De�nition: A = hi; R; tk2W i is a deontic world system i¤
1. W is a set of possible worlds,
2. i 2W ,
3. R is a relation on W , i.e., R �W �W ,
4. for k inW , tk is a truth-value assignment to the propositional variables,
5. every world k in W has an R-alternative world j in W , and
6. for each world k in W there is a natural number n such that k is n
permissible R-steps away from i.

Where A = hi; R; tk2W i is a deontic world system, we take i to represent the
actual world. Clause 5 is required because O'! P' is an axiom in the deontic
logic D and therefore provable in all of the deontic systems containing D. Given
any world j in W , O(' _ :') will be true at j, and therefore so will P('_:'),
which means that there must a world k that is a permissible alternative to j.

13



Truth in a deontic world system at a given world is de�ned as follows.

De�nition: If A = hi; R; ti2W i, A is a deontic world system and for each k in
W ,
1. If ' is atomic formula pn, then ' is true in A at k i¤ tk assigns truth
to pn,
2. :' is true in A at k i¤ ' is not true, i.e., false in A at k;
3. ('!  ) is true in A at k i¤ either ' is false or  is true in A at k, and
4. O' is true in A at k i¤ for all j 2W , if j is a permissible R-alternative
to k, i.e., hk; ji 2 R, then ' is true in A at j.

Deontic validity in a deontic world system is de�ned as truth at every world in
that system, and deontic entailment is de�ned similarly.

De�nition: If A = hi; R; tiii2W , A is a deontic world system, and k is a world
in W , and � [ f'g is a set of formulas, then
(1) ' is deontically valid in A, in symbols j=A ', i¤ ' is true at every
world in A; and
(2) � deontically entails ' in A, in symbols � j=A ', i¤ for each world k
of A, if  is true at k for every  in �, then ' is true in A at k as well.

A deontic logic �, we will say, strongly characterizes a class A of deontic
world systems if derivability in � coincides with deontic entailment in every
world in A; and � characterizes A if provability in � coincides with validity in
every world in A.

De�nition: If � is a (propositional) deontic logic and A is a class of world
systems, then
(1) � strongly characterizes A if,and only if, for all sets of formulas � and
all formulas ', � `� ' i¤ for all deontic world systems A in A, � j=A ';
(2) � characterizes A if,and only if, for all formulas ', `� ' i¤ for all
deontic world systems A in A, j=A '.

Lemma: If a deontic logic strongly characterizes a class of deontic world
systems, then it also characterizes that class.

12 Completeness Theorems

We have noted that every world in a deontic world system has a permissible
alternative, and, other than the real world, every world has a world that is
permissible alternative to it, even if that alternative is only itself. No possible
world in such a system can be isolated, accordingly, except in the sense of being
its own permissible alternative. But note that a world that is a permissible
alternative of itself is an ideal world, because then whatever is permissible in
that world is the case in that world, and whatever ought to be the case in that
world is also the case in that world.
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Our �rst completeness theorem concerns the deontic system D, which is
minimal in that it only requires that every world have a permissible alternative.1

Theorem 1: (1) For all formulas ' and sets of formulas �, � `D ' i¤ for all
deontic world systems A, � j=A '; and (therefore) (2) the deontic system
D strongly characterizes the class of deontic world systems.

The system D is minimal as a deontic logic. But, as we noted in section 5,
D allows for the permissibility of a forbidden state of a¤airs. In other words,
P(:P' ^ ') is consistent in D, because O(O:'! :') is not a theorem of D,
which means that its negation, which is equivalent to P(:P' ^ ') can be true
for some formula '.
What is needed to correct this is the thesis O(O'! '), which semantically

stipulates that only ethically ideal worlds should be permissible. A permissible
world, in other words, should be one in which only what ought to be the case
in that world is in fact the case.

De�nition: If A is a deontic world system and k is a world in A, then:
(1) k is an ethically ideal world if, and only if, for all formulas ', O(O'!
') is true at k in A; and
(2) A is ethically ideal world system if, and only if, every permissible
alternative in A is ethically ideal, i.e., i¤ for each world k in A, if k is a
permissible alternative of some world j in A, then k is ethically ideal.

Lemma: If A = hi; R; tk2W i is a deontic world system, then A is ethically ideal
if, and only if, the relation R of permissible alternatives in A is re�exive,
i.e., i¤ for each world k in A, if k is a permissible alternative of some world
j in A, then k is a permissible alternative of itself, i.e., hk; ki 2 R.

Theorem 2: The deontic system DM strongly characterizes the class of eth-
ically ideal deontic world system, i.e., the class of deontic world systems
that are re�exive in their range.

It might be argued that the above characterization of ethical ideality is not
quite correct. The logic DM does characterize ethical ideality in the sense
de�ned, but, because O('! OP') is not provable in DM , its negation P(' ^
:PO') is consistent in DM . Therefore, by theorem 2 and the de�nition of
ethical ideality, (' ^ :PO') is true in some ethically ideal world. What this
formula says is that some state of a¤airs that is forbidden to be obligatory is
the case in an ethically ideal world, and that seems counter-intuitive.
Of course, it is unreasonable to require that whatever is the case (no matter

how bad it is) in the real world ought therefore to be permitted to be the case.
But in an ethically ideal world one might maintain that only what ought to
be permitted is in fact the case. That means that the relation of alternative

1Proofs of completeness theorems in this section are entirely similar to those in chapter 6
of Modal Logic: An Introduction to its Syntax and Semantics, Oxford University Press, 2008,
by Nino B. Cocchiarella and Max A. Freund.
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permissibility of any one ethically ideal world with respect to another must
be symmetrical, i.e., that each must be permissible with respect to the other.
Symmetric permissibility between ethically ideal worlds that are permissible
alternatives, i.e., that are in the range of the permissibility relation, is logically
enforced by the deontic thesis O('! OP') of the logic DBr.

Theorem 3: The deontic logic DBr strongly characterizes the class of deontic
world systems that are both re�exive and symmetric in the range of their
alternative permissibility relations.

Another problem with ethically ideality as de�ned above and characterized
by the deontic logic DM is that it allows a forbidden state of a¤airs to be
permissibly permissible. That is, (:P' ^ PP') is consistent in DM for some
formula '. In other words, the negation of this formula, namely O'! OO',
which is equivalent to PP'! P', is not provable in DM .
Intuitively, no permissible state of a¤airs should be both denied and yet per-

missibly permissible. In other words, any world that is a permissible alternative
of a permissible alternative of a world k should itself be a permissible alternative
of k. That means that the permissible alternative relation should be transitive.
Transitivity is what is required by the deontic thesis O'! OO' of DS4.

Theorem 4: The deontic logic DS4 strongly characterizes the class of deontic
world systems that are transitive and re�exive in the range, i.e., DS4
strongly characterizes the class of transitive ethically ideal deontic world
systems.

A transitive ethically ideal deontic world system is an appropriate type of
semantic structure for deontic logic in that each permissible world of such a
structure is not only ethically ideal but also a permissible alternative of the real
world of that structure. Thus, DS4 allows us to view a deontic world system
as one in which all of the permissible alternatives of the real world are ethically
idealized alternatives of the real world. What is permissible in the real world
is so because it is actually the case in at least one of the idealized alternatives
of the real world. Also, what is forbidden in the real world of such a system is
what is not realized in any ethically idealized alternative of the real world. In
addition, those and only those states of a¤airs that are realized in every ethically
idealized alternative of the real world are obligatory in the real world.
Combining the desirable features of the transitive deontic world systems that

are characterized by DS4 with the symmetrical systems characterized by DBr
results in those deontic systems in which the permissible-alternative relation is
an equivalence relation on the set of permissible alternatives, i.e., on the range
of permissible-alternative relation. Such an equivalence relation partitions the
worlds that are permissible alternatives into equivalence cells in which all of the
worlds in such a cell are permissible alternatives to all of the other worlds in
that cell.
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Theorem 5: The combined system DBr + DS4 strongly characterizes the
class of deontic world systems that are partitioned in the range of their
permissible-alternative relations.

Each of the deontic logics DBr, DS4, and their union DBr+DS4 allow for
the possibility that some state of a¤airs ' is both permitted to be obligatory
and permitted to be forbidden, i.e., both PO' and PO:' can be true in the
real world of a deontic world system A that is partitioned in its range. That
is, we could have PO' ^ PO:' be true in the real world of A, so that O' will
then be true in all of the worlds of one of the cells of the partition while O:'
is true in all of the worlds of another cell of the partition.
To exclude the possibility of a state of a¤airs ' being both permitted to

be obligatory and permitted to be forbidden, i.e., to exclude PO' ^ PO:'
as possibly being true in the real world, requires that we take the alternative-
permissibility relation to be connectable in its range, i.e., to be such that any two
permissible alternative worlds have a world that is a permissible alternative to
both. The deontic principle PO' ! OP', the negation of which is equivalent
to PO' ^ PO:', excludes this possibility. This principle is the special axiom
of the deontic logic DS4:2. Adding this principle to DBr + DS4 results in
DBr +DS4:2, which we noted in section 9 is equivalent to DS5.

De�nition: If A = hi; R; tiii2W is a deontic world system, then A is connectable
in its range if, and only if, for all worlds i; j of A, there is a world k of
A that is a permissible alternative of both i and j, i.e., there is a k 2 W
such that hi; ki 2 R and hj; ki 2 R.

Theorem 6: DS4:2 strongly characterizes the class of deontic world systems
that are re�exive and connectable their range; that is, DS4:2 strongly
characterizes the class of ethically ideal deontic world systems in which
any two permissible worlds have a common permissible alternative.

As noted in section 9, the formula,

P' ^ P ^ :P[(' ^ P ) _ ( ^ P')];

which, by theorem 6 of DKr, is equivalent to

P' ^ P ^ :P(' ^ P ) ^ :P( ^ P');

is consistent not only in the deontic logics DBr and DS4 but also in DS4:2.
The consistency of this formula allows for there being states of a¤airs that are
jointly permissible and yet it is forbidden that one actually be the case while
the other is permitted. In a deontic world system that is partitioned in its range
and that has two permissibility cells, for example, we could have ' true in a
world in one of the cells while  is forbidden in that world, and therefore false
in all of the worlds of that cell, and yet  is true and ' is forbidden in one of
the worlds of the other cell and hence ' is false in all of the worlds of that cell.
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In other words, both P' and P will be true in the real world of such a deontic
world system, and yet :P('^P ) and :P( ^P') can also true in that world.
To exclude such pairs of permissible states of a¤airs requires that permis-

sible alternatives in a deontic world system be permissibly comparable, i.e., at
least one of two is a permissible alternative of the other. What is required,
accordingly, is that the permissible alternative relation be quasi-connected in
its range, i.e., if i and j are permissible alternatives of the same world k, then
either i = j or i is a permissible alternative of j or j is a permissible alternative
of i.

Theorem 7: The deontic logic DS4:3 strongly characterizes the class of tran-
sitive deontic world systems that are both re�exive and quasi-connected
in their range, i.e. DS4:4 strongly characterizes the class of transitive
ethically ideal deontic world systems in which any two permissible worlds
are permissibly comparable.

In an earlier remark we noted that the special deontic principle of DS4:2
a¤ected the class of deontic world systems partitioned in their range so as to
reduce them to but one permissibility cell, i.e., to those in which permissibility
between permissible alternatives is a universal relation. Clearly, because DS4:3
contains DS4:2, a similar observation hold for the principle deontic thesis for
DS4:3.
Moreover, because DS5 is equivalent to both DBr + DS4:2 and DBr +

DS4:3, this special subclass of the deontic world systems partitioned in their
range is also strongly characterized by DS5.

De�nition: A = hi; R; tiii2W is a deontic world system that is universally
related in its range if, and only if, A is a deontic world system and for
all worlds i; j in the range of R, i is a permissible alternative of j, i.e.,
hi; ji 2 R.

Theorem 8: DS5 strongly characterizes the class of deontic world systems that
are universally related in their range.

Deontic world systems that are universally related in their range are of spe-
cial interest in deontic logic because they have all of the desirable features noted
above and none of the undesirable ones that we noted for the weaker systems.
In particular, a deontic world system that is universally related in its range con-
sists of a real world that need not itself be ethically ideal but that nevertheless
has a collection of ethically idealized worlds as permissible alternatives that are
permissible alternatives of each other.
It can also be shown that the ethically ideal worlds in such a deontic world

system are �indiscernible�in their deontically closed formulas, i.e., formulas in
which every occurrence of a propositional letter lies within the scope a deontic
operator; and therefore they are worlds that are indiscernible simpliciter if they
have the same extensional, non-deontic facts. What is permissible in the real
world of such a world system then amounts to what is true in an ethically ideal
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world, and what is obligatory in the real world amounts to what is true in each
of the real world�s ethically idealized alternatives.
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