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Abstract

A semantics for logical necessity, based on Carnap’s criterion of ade-
quacy, is given with respect to the ontology of logical atomism. A calculus
for sentential (propositional) modal logic is described and shown to be
complete with respect to this semantics. The semantics is then modified
in terms of a restricted notion of ‘all possible worlds’ in the interpretation
of necessity and shown to yield a completeness theorem for the modal logic
S5. Such a restricted notion introduces material content into the meaning
of necessity so that, in addition to atomic facts, there are "modal facts"
that distinguish one world from another.

In a well-known paper on "The Philosophical Significance of Modal Logic,"
Gustav Bergmann suggested that one might make sense of propositional modal
logic in terms of a four-valued matrix in which the values are taken as necessary
truth, contingent truth, contingent falsehood, and necessary falsehood, respec-
tively.! In this way, Bergmann claimed, “one might ... conceivably arrive at an
adequate explication, very much in the style of truth tables, of what could be
meant by calling logical truths necessary” (p.483). Such an explication could
not succeed, however, because it had already been shown that no finite matrix
is characteristic of modal logic—or at least not of any of the so-called normal
systems of Lewis and Langford.?> What this showed, according to Bergmann,
was that modal logic has no philosophical significance.

This conclusion is not only wrong, but wrongly based as well. This is because
the result in question was proven in terms of a certain type of matrix known as
a Henle matrix, which means that it applies to systems that do not validate, for
any positive integer n, the statement that there are at most n propositions—
where by a proposition we mean the kind of entity that can be associated with
a set of possible worlds (or the characteristic function of such a set). That
is, the result applies to systems for which it is not assumed (nor rejected for
that matter) that there are only a finite number of possible worlds. This, we
maintain, is as it should be—or, at least, it certainly is as it should be in the case
of logical necessity as the modal counterpart of the semantic notion of logical
truth, which is the only notion of necessity considered by Bergmann. In this
regard, the result is not about the number of truth values that a proposition

1G. Bergmann 1960.
2See J. Dugundji 1940.




might have—which in a Henle matrix is still just two, namely, truth and falsity—
but about the number of possible worlds in which a proposition might be true
or false.

What can be meant by calling logical truths necessary? The answer consists
in counstructing an appropriate semantics for sentential (propositional) modal
logic, where [0 represents logical necessity and ¢ represents logical possibility,
and then describe a modal logic that can capture this semantics by proving a
completeness theorem for the logic.> That Bergmann’s finite-matrix proposal
cannot succeed does not show that no semantics can. Indeed. in what follows
we will construct a semantics for logical necessity based on Rudolf Carnap’s
criterion of adequacy and the metaphysical framework of logical atomism, a
semantics, we maintain, that provides a clear and precise account of the con-
nection between logical truth and logical necessity—at least with respect to this
kind of metaphysical framework.* We will assume throughout that possibility,
as represented by ¢, is definable (analyzable) in terms of negation and necessity,
i.e., that ¢ can be taken as an abbreviation of —[-.

1 The Syntax of Propositional Modal Logic

As primitive symbols of propositional modal logic we will use ‘—’ as the symbol
for negation, ‘—’ as the symbol for the (material) conditional, and, as already
noted, ‘00" as the symbol for (logical) necessity. The logical constants ‘A’, ‘V’,
‘»’ and ‘¢’ for conjunction, disjunction, biconditionality, and possibility are
defined in the metalanguage, which we take to be ZF set theory, as follows (with
», %, and x as metalanguage variables for formulas):

L (pAY) =g =(p = )

2. (pV) =4 (mp =)

3. (o) =g (¢ 2> ) AW = )]
4. Op =g ~U-op.

We assume the usual conventions about sometimes deleting or dropping
parentheses. In particular, we assume that ‘A’ and ‘V’ apply before ‘=’ and ‘<.
We take the (potentially) infinite sequence Py, Py, ..., Py, ..., (for each n € w) as
sentence letters (propositional variables).> Because the conditional, negation
and necessity signs are the only primitive logical constants, we call the formulas

30r show, as is the case in quantified modal logic for full predicate logic, that the semantics
cannot be completely captured because it yields an essential incompleteness theorem. See
Cocchiarella 1975 for such a result. Such an incompleteness theorem does not nullify the
semantics, though this takes us into considerations that do not concern us here.

4There are reasons to think that no other sort of metaphysical framework can succeed in
adequately explaining the connection between logical truth and logical necessity. This is not
to say, however, that other frameworks cannot account for notions of necessity other than
logical necessity.

5We understand w to be the set of natural numbers.




of the resulting sentential (propositional) modal logic modal CN-formulas, which
we define inductively as follows:

Definition 1 ¢ is a modal CN-formula, in symbols, p € FM , if, and only if, ¢
belongs to every set K to which Py, belongs, for n € w, and which is closed under
the formation of conditionals, negations and necessity; i.e., FM =q NK[P, €
K, for all n € w, and for all p,7p € K, =@, (¢ =), and Op € K].

The following induction principle is an immediate set-theoretic consequence
of this definition.

Theorem 2 (Induction principle for FM ):
If (1) for eachn € w, P, € K,

(2) for all p € K, ~p € K,

(8) for all p,9p € K, (p =) € K, and

(4) for all p € K, Op € K,

then FM C K.

2 Semantics for Logical Necessity

As already noted, a natural, intuitive formal semantics can be given for logical
necessity if we base it on the metaphysical framework of logical atomism.5 This
is because a logically possible world is completely determined in logical atomism
by the atomic states of affairs that obtain in that world, which is perhaps the
clearest notion of a logically possible world that we can have. Thus, if each
atomic sentence letter is taken to represent an atomic state of affairs, then a
possible world can be represented by a distribution of truth values to all of the
sentence letters, i.e., by a complete representation of the atomic states of affairs
that obtain in that world as opposed to those that do not.” For convenience, we
will represent truth by 1 and falsehood by 0. We call an assignment of 0 and 1
to the sentence letters a truth-value assignment.

Definition 3 ¢ is a truth-value assignment, in symbols t € V, if, and only
if, t € {0,1}{Pn€wt e iff t is a function from the set of sentential letters
into {0,1}.

By a modal-free formula we mean a formula in which ‘1’ does not occur,
i.e., in which the only logical constants that occur are the conditional and the
negations signs. For this reason we will call these formulas CN-formulas, the
set of which is represented by ‘FMcn’.

6For a fuller discussion of the semantics of logical necessity in the metaphysical background
of logical atomism, see chapter six, “Logical Atomism and Modal Logic” and chapter seven,
"Logical Atomism, Nominalism, and Modal Logic," of N. B. Cocchiarella 1987.

7If there are only a finite number of atomic states of affairs, then different sentence letters
will be assigned the same truth value.




Definition 4 ¢ is a modal-free formula, in symbols ¢ € FMcy, if, and only
if, p € FM and T’ does not occur in .

The truth-value in a possible world of a modal-free formula can of course be
inductively defined in the usual way as follows. In particular, where ¢ € FM¢on,
we will read ‘= ¢’ as ‘p is true in (or with respect to) ¢’ and ‘¥; ¢’ as ‘p is not
true in ¢’. The definition is as follows.

Definition 5 Ift € V, then:

(1) =, Py iff t(Py) =1,

(2) =t~ iff By o, and

(3) =t (@ — ) iff either By o or =4 1.

Now a modal-free formula is a tautology, i.e., a logical truth on the level of
propositional logic, if, and only if, that formula is true in every truth-value as-
signment, i.e., in every logically possible world as understood in logical atomism.
For convenience we will speak of a logically true formula as L-true.

Definition 6 If ¢ € FMcn, then ¢ is L-true if, and only if, for allt € V,
e -

The notion of being a tautology, or being tautologous, can be extended to
modal formulas as well so long as they are obtained from tautologous modal-free
formulas by substitution of formulas for sentence letters. We define this notion
as follows.

Definition 7 If p € FM, then ¢ is tautologous if, and only if, there is a modal-
free formula » € FMon such that (1) ¢ is L-true (i.e., tautologous) and p is
obtained from 1 by uniformly substituting formulas for sentence letters occurring

in .

Of course, taulologous modal formulas are L-true and therefore logically
necessary.

Theorem 8 If p € FM and ¢ is tautologous, then ¢ is L-true.

Proof. If ¢ is tautologous, then it is obtained from a tautologous modal-
free formula ¢ by uniformly substituting formulas for sentence letters. If ¢
were not L-true, then there would be a ¢t € V such that #; ¢; but then, by
assigning 1 or 0 to the sentence letters occurring in ¢ depending on whether the
formulas substituted for those sentence letters to obtain ¢ are true or false in
t, respectively, means that #; ¢, which is impossible because 1 is a modal-free
tautologous formula, which means that = ¢, for allt € V. m

Being tautologous is not all there is to L-truth, and therefore to logical
necessity, however. In particular, there are modal formulas, such as (Op — ¢)
and O(p — ) — (Op — ) that are logically necessary but not tautologous,




and so we need an extended definition of truth under which these formulas are
L-true. So the question now is how are we to extend the above definition of
truth and L-truth so as to apply in an intuitively acceptable way to modal as
well as modal-free formulas. And given such an intuitively acceptable notion of
L-truth, another question is what propositional modal calculus, if any, captures
as provable all and only the modal formulas that are L-true?

3 Carnap’s Criterion of Adequacy

Rudolf Carnap in his book, Meaning and Necessity, proposed the following
informal convention as a criterion of adequacy for any truth clause for logical
necessity:

for any sentence ¢, Oy is true iff p is L-true.

As restricted to modal-free formulas, i.e., for ¢ € FM¢y, this criterion
amounts exactly to ¢ being tautologous—i.e., by the above results, to ¢ being
logically true—which is the kind of necessity that Bergmann intended in his
criticism of modal logic. Of course, the problem Bergmann had in mind is not
with the truth-conditions of Oy when ¢ is modal free, but with Op when ¢
already contains occurrences of the necessity sign; but in that case the notion
of L-truth, as it occurs in the above criterion of adequacy, presupposes that we
already know what it means for a modal formula to be true in a possible world.

Note that, relative to the framework of logical atomism, where (on the propo-
sitional level of logical analysis) logically possible worlds are represented by
truth-value assignments, what Carnap’s criterion of adequacy amounts to for
modal-free formulas, when truth is relativized to truth in a possible world, is
the following:

for all p € FMcoy and all t € V, Oy is true in ¢ iff for all #' € V, o is true in ¢'.

In this form, Carnap’s criterion is an explicit truth condition for Oy when
¢ is modal free. If we now generalize and apply this same truth condition
to formulas in general, we obtain an intuitively natural and acceptable truth
condition for Oy even when ¢ is not modal free (at least when O is interpreted
as logical necessity in the framework of logical atomism). The above clause, in
other words, but where F'M¢cy is replaced by F'M, can be directly inserted into
the inductive definition of truth in a truth-value assignment, thereby yielding
an inductive definition of truth in a possible world that is applicable to modal
formulas as well. That is, in the inductive definition of ‘=, given above, we can
add the following new inductive clause:

(4) e Op iff for all t' € V, = .

The definition of logical truth as truth in all logically possible worlds can
now be extended to all formulas in F'M, and not just those in F Mgy .

Definition 9 If ¢ € FM, then ¢ is L-true iff for allt € V, = .




In regard now to the completeness problem as to which propositional modal
calculus has all and only the logical truths as its theorems, we observe first that
such a system must contain at least the system S5. The axiom schemes of S5
are as follows.

1. If ¢ is tautologous, then g5 ¢;
2. Fgs Op —

3. Fss O(p = ¢) = (Op — Ov);
4. kg5 7Oy — O-Oep.

The inference rules of S5 are modus ponens (MP) and the rule of necessita-
tion (N):

MP: If Fg5 » and Fg5 (@ — ), then Fgs5 .
N: If g5 ¢, then Fg5 .

Theorem 10 If g5 @, then ¢ is L-true.

Proof. If ¢ is tautologous, then, as already proved above, ¢ is L-true. For
axiom 2, suppose t € V and |=; Oy; then for ¢ € V, |=¢ ¢, and hence ¢ o,
which shows that Oy — ¢ is true at every ¢t € V' and hence that it is L-true.
The proof for axiom 3 is similar. For axiom 4, suppose ¢t € V and that =, -0y,
and suppose also by reductio that #, O0-Op. Then, by the truth clause for O,
there must be some t' € V such that ¥y —Op, and hence that ¢ Op, which
means that for all ¢’ € V', =4 ; but that is impossible because, by hypothesis,
there is a ¢ € V such that ¥y . Therefore, if |y =0y, then ¢ O-Oep, which
shows that axiom 4 is L-true. Finally, it is clear that if ¢ and ¢ — 9 are L-true,
then so is 1 as well as Oy, which shows that L-truth is preserved under the
inference rules MP and N. m

The question now is does the converse of this theorem also hold? The answer,
as the following lemmas indicates, is negative, i.e., not every logical truth as
defined above is a theorem of S5. First, let us note that the rule of uniform
substitution is valid in S5, i.e., if Fg5 ¢, then Fg5 (P, /1), where (P, /v) is
the result of uniformly substituting ¢ for P, in ¢.

Lemma 11 US: If Fs5 @, the Fss o(Pp/1).

Proof. Note first that if ¢ is a tautology, the so is ¢(P, /1). Also, if ¢ is an
instance of axiom schemes 2, 3, or 4, then p(P,/) is also an instance of the
same axiom schema. Finally, we note also that the inference rules M P and N
preserve provability in S5 under US, from all of which the validity of US in S5
follows. m

In the next lemma we note that a certain type of formula, namely, =0,
where ¢ is modal free but not tautologous, is L-true. This is as it should be if




logical necessity is the counterpart in modal logic of logical truth in semantics.
That is, if ¢ is modal free and not tautologous, then ¢ is not L-true, and
therefore it should be that ¢ is not logically necessary, which is in fact the case
in our semantics.

Lemma 12 If ¢ is a modal free and not tautologous, then =0y is L-true.

Proof. If ¢ is a modal free and not tautologous, then there must be some ¢t € V'
such that ¥; ¢, and hence by the truth clause for OO, ¥y Oy, for all ¢/ € V,
which means that =y =0, for all t' € V, and hence that =0y is L-true. m

Finally, we note that even though P, is modal free and not tautologous, for
all n € w, and hence by the previous lemma that —-OF,, is L-true, nevertheless
=[P, is not a theorem of S5. In other words, not all logical truths are theorems
of S5.

Lemma 13 (1) -0OP, is not a theorem of S5, i.e., ¥s5 ~OP,; and (therefore)
(2) not every L-true formula is a theorem of S5.

Proof. If =[0P, were a theorem of S5, then, by the rule of uniform substitution,
US, =0OP,(P,/¢V—p) would also be a theorem of S5, i.e., then g5 ~0(pV-yp),
for all formulas p. But Fg5 V-, and therefore, by the rule N, Fg5 O(p V),
which would mean that S5 is inconsistent. But S5 is consistent, not inconsistent,
which, by reductio, shows that ¥ g5 -0OFP,. m

What the above proof shows, incidentally, is that logical truth is not pre-
served under the rule US of uniform substitution. In particular, note that
whereas —0OP, is L-true, the result of substituting (¢ V —p) for P, in —OP,,
namely =O(¢ V —p), is not L-true—and, in fact, it is L-false. Uniform substitu-
tion can take us not only from logical truths to nonlogical truths, in other words,
but to logical falsehoods as well. The reason is that unlike sentence letters, not
all formulas—e.g, (¢ V —p)—represent an atomic situation in logical atomism.

Before concluding this section, there is one useful fact about modally-closed
formulas in §5, namely that they are provably equivalent to their necessitations.
We define modally-closed formulas as follows, and then prove this result for S5.
We assume in the proof that the following theses are well-known theorems of
S55. We state the theses here as lemmas.

Definition 14 ¢ is a modally closed formula if, and only if, o € FM and every
occurrence of a sentence letter in @ occurs within the scope of an occurrence of
0.

Lemma 15 (The Brouwerische thesis) For all ¢ € FM, bgs p — O0¢p.
Lemma 16 For all p,7p € FM, Fg5 (Op — O¢) — O(p — ).
Lemma 17 (The S4 axiom) For all ¢ € FM , Fg5 Op — OOp.

Theorem 18 If ¢ is a modally closed formula, then g5 (¢ > Op).




Proof. Note that because Op — ¢ is an axiom schema of S5, it suffices
to show by induction on F'M that if ¢ is a modally closed, then kg5 ¢ — Op.
Accordingly, let I' = {p € FM :if pismodally closed, then kg5 ¢ — Ogp}. Now.
because P, is not modally closed, for all n € w, it follows vacuously that P, € I'.
Suppose then that ¢ € I' and show that ¢ € I'. Assume, accordingly that —¢
is modally closed, from which it follows that ¢ must also be modally closed, and
hence, by the inductive hypothesis, g5 ¢ — Oy, and therefore Fg5 ¢ — O-—p
as well, from which, by truth-functional logic, it follows that Fg5 O—p — .
But then, by the inference rule N and axiom schema 3, kg5 00— — O-p.
But, by the above (Brouwerische) lemma, Fg5 =@ — OO0, from which it
follows that g5 ¢ — 0=, and hence that - € I'.

Suppose now that p,¢ € T', and show that (¢ — ) € I'. Assume that
(¢ — ) is modally closed; then so are ¢ and v, and therefore, so is —p, and
hence, by the inductive hypothesis and because = € ', Fg5 =¢ — O=-p and
Fgs ¥ — . Now, by the above lemma, Fg5 (O — O¢) — O(p — ), and
hence, by truth-functional logic, Fg5 (O-p V Oy) — O(p — v); and therefore
Fss (V) = O(p = ), ie., Fss (p = ¥) = O(p — 9), from it follows that
(p—>y) el

Finally, assume ¢ € I' and show that Oy € I'. But by the above (54)
lemma, Fg5 Oy — OOy, from which it follows that Op € I'. We conclude by
the induction principle that FM CT. =

4 A Modal Logic for Logical Atomism

If S5 is not complete with respect to logical truth, what, if any, modal calculus
is? As we will see, the system described in this section contains S5 and yields a
strong completeness theorem for logical necessity as explicated above. Because
this calculus can be taken to represent logical atomism (on the sentential level
of analysis), we will refer to it as Lq;.®

The inference rules of L,; are MP and N as in S5, and the axioms are as
follows:

1. If ¢ is tautologous, then Fr_, ¢;

2. b, O(@—v) = (Op — OY); and

3. If ¢ is modal free and not tautologous, then Fr_, —~Clp.

It is of course clear from theorem 10 and lemma 12 that every theorem of

L, is L-true, and hence, because no formula can be both true and false in the
same truth-value assignment, that L,; is consistent.

8The axioms of Lq; are simpler than the system described for this purpose in chapter 6 of
Cocchiarella 1987 (which was originally published in 1974). The simplification was given in
Carroll 1978.




Theorem 19 Ift;_, ¢, then ¢ is L-true.

The next theorem indicates that in logical atomism no new “facts” of the
world are described by means of modal formulas over and above those that are
described by modal-free formulas—because, according to that lemma, whatever
can be described by means of a modal formula can also be described by a prov-
ably equivalent modal-free formula. This is as it should be in logical atomism
where all facts, i.e., states of affairs that obtain, are ultimately reducible to (or
analyzable in terms of) atomic facts.

Theorem 20 For all p € FM, there is a modal free formula ¢ such that -r_,
(o < 1)

Proof. Let I' = {¢ € FM : for some modal-free ¢y € FMcn, Fr.. (¢ ¢ ¥)}.
It suffices to show by induction on FFM that FM C I'. Suppose first that
n € w. Then, because 1, (P, < P,), P, € I'. Suppose now that ¢ € T’
and show —p € I'. By assumption, for some ¢ € FMcn, Fr.. (¢ < ¢), and
therefore, by truth-functional logic, Fr,, (-p <—1). But ¢ € FMcy, so
therefore ¢ € T'. Suppose now that ¢, x € ' and show (p — x) € I". By
assumption, Fr_, (¢ < v), for some » € FMcy, and b, (x ¢ '), for some
Y € FMgn; and therefore, by truth-functional logic, Fr., (¢ = x) < (¥ —
Y'). But (v — ') € FMgn, so therefore (¢ — x) € I'. Finally, suppose
¢ € I' and show Oy € T'. By assumption, F,,, (¢ < ), for some ¢ € FM¢y;
therefore, by the inference rule NV, axiom schema 2, and truth-functional logic,
Fr.. (Op ¢ Oy). We consider two subcases depending on whether or not 1,
which is modal-free, is tautologous or not. Suppose, first, that ¢ is tautologous.
Then, Fr,, ¥, which means, by the rule N, that 1, O, and therefore, by
truth-functional logic, -, Op. Consequently, again by truth-functional logic,
Fr.. (Op ¢ [P, V -P,]); from which it follows, because (P, V —-P,) € FMcn,
that Oy € I'. Suppose now that 1 is not tautologous. Then, by definition, =y
is an axiom of Lg, and therefore Fr_, -0, from which, by truth-functional
logic, it follows that 5 _,—Op. Consequently, by truth-functional logic, Fr,
(Op <[P, V —P,)), where [P,V —P,] € FMcp; and so, in this case as well,
Op € I'. That is, whether ¢ is tautologous or not, Oy € I'. m

The next theorem is both useful for what follows and appropriate in regard
to logical necessity. It says, in effect, that if a formula ¢ is not provable, then
the logical possibility of its being false is provable, i.e., then $— is provable.

Theorem 21 For all p € FM, either b1, v or Fr,,"Oep.

Proof. By the previous theorem, for some modal-free v € FMgn, b, (¢ <
1), and therefore, by the rule N, axiom schema 2 and truth-functional logic,
Fr,, (Op < Ov), from which, by truth-functional logic, it follows that -,
(-Op «<-0Ow). If ¢ is tautologous, then Fy, ¢, and therefore, by truth-
functional logic, Fr,, ¢. On the other hand, if ¢ is not tautologous, then
Fr.. [, and therefore, by truth-functional logic, Fr,—~0Op. Therefore, either
Fr..eorbg, - Op. m




Theorem 22 (1) Fr., Op — ; and (2) Fr,, Op — O0p.

Proof. For (1), we have, by the previous theorem, either Fr_, ¢ or Fr_,—Op.
But, by truth-functional logic, Fr,, ¢ = (Op — ¢) and Fr_,—~0O¢p — (Op — ¢),
and therefore, in either case, by the M P rule, Fr,, Op — ¢.

For (2), we also have, by the previous theorem, either 1, ~¢ or Fr_, 7O-p;
and therefore, by the rule NV and the definition of ¢, either F-1,_, O-porFy_, Op,
ie., either Fr_ ,—0p or Fr,, Op, and therefore, again by the rule N, either
Fr,,— Q¢ or Fr,, O0p. But, by truth-functional logic, Fr,,—0p — (O —
O0¢p) and Fr,, O0p — (0 — OOyp); and so in either case Fr,, O — OOy,
which completes the proof of (2). m

We note that ¢y — OO is equivalent to -y — 0=, which means that
every instance of axiom schemes 2 and 4 of S5 are theorems of Ly, and that L,
is an extension of S§5. Of course, because the rule US of uniform substitution
is not valid in L4, this means that L, is a nonclassical system, and hence a
nonclassical extension of S5.

Theorem 23 L, is a nonclassical extension of S5.

Now if the necessity sign really does represent logical necessity, then it would
seem that any modally closed formula should be either L-true or L-false (i.e.,
its negation should then be L-true). Accordingly, if L,; does yield a complete
representation of logical necessity (as understood in logical atomism), then every
modally closed formula should be either provable or refutable in L,;. This in
fact is the case, as is indicated in the following theorem.

Theorem 24 If ¢ is modally closed, then either Fr,, v orFr..—p.

Proof. Assume the hypothesis. Suppose ¢ is not provable in L, i.e., suppose
¥r., p. Then, by theorem 21, -, _,-Oyp. But, by assumption ¢ is modally
closed, so by theorem 18, g5 (¢ + Oy), and hence, because L, contains S5,
Fr., (p < Op). Therefore, by truth-functional logic, Fr,,—p. =

5 Maximally Consistent Sets and Strong Com-
pleteness
In addition to provability in L,; there is also the relation of derivability between

a set of formula and a formula, which we can define in terms of provability as
follows.

Definition 25 If KU{p} C FM, then K yields ¢ in Lgt, in symbols K Fr_, o,
if, and only if, for somen € w and ¥y, ..., ¢, € K, b, (WoA..AY,,_1 — <,0).9

9Note that, by convention, if n = 0, then (g A ... A,_1 — @) is just ¢.
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The next two definitions make explicit the notions of consistency and maxi-
mal consistency in L,;. Maximal consistency amounts to a complete description
of a possible world, and in that sense maximally consistent sets are the syntac-
tical correlates of possible worlds. Representing possible worlds in terms of such
syntactical correlates enables us to prove the strong completeness of Lg;.

Definition 26 If K C FM, then K is consistent in Ly if, and only if, there
is no formula ¢ € FM such that K Fr_, ¢ and K *Fp,, —p.

Definition 27 If K C FM, then K is mazimally consistent in Ly, itn symbols
K e MCy,,, if, and only if, K is consistent in Lq; and for all ¢ € FM, either
v € K or K U{p} is inconsistent in Lq;.

The following lemma states three well-known and obvious properties of max-
imal consistency that are easily proved.

Lemma 28 If KU {¢} C FM and K € MCy,,, then:
(1) ¢ € K if, and only if, ~p ¢ K ;
(2) (p = ) € K if, and only if, either p ¢ K or ¢ € K; and

(8) if FrL., @, then p € K.

at?

Also, we will find the following theorem useful in proving strong complete-
ness. We assume for its proof Lindenbaum’s lemma that every consistent set of
formulas can be extended to a maximally consistent set. The maximally con-
sistent set in Lindenbaum’s lemma is proved to exist by a well-known type of
construction that we won’t go into here.!®

Theorem 29 If K U {¢} C FM, then K Fx ¢ if, and only if, for oll T €
MCyr,,, if KCT, thengpeT.

at?

Proof. Assume the hypothesis. We first prove the left-to-right direction and
assume K r_, o, I' e MCp,,,and K C I, and show that ¢ € I'. We note that,
by hypothesis and definition, I k1, ¢; and, therefore, because I is (maximally)
consistent in Lq, I' ¥y —p. Now, by lemma 28, ~p € Tiff p ¢ T'; but if ~p € T,
then, by definition (and the fact that Fr,, (¢ — —¢)), I' by -, which, as
already noted, is not so, which means that = ¢ I', and hence ¢ € I", which was
to be shown.

10 A brief sketch of Lindenbaum’s lemma is as follows. Suppose we have a consistent set
K C FM, and that ¢q,...,¢,, is an enumeration of F'M. Then we recursively define a function
I" as follows:

1. 'o=K

_ Fn if Fn '_Lat —\(pn_,’_l
2 Lo = { I'n U{pp,41} otherwise

We then show I'y, is consistent for all n € w, from which it follows that I'* = Upeo 'y is also
consistent, and yet K C1I'"" € MCr,,.
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For the converse direction, assume now instead that for all I' € MCfy,,,, if
K CT,then p € I', and show that K Fyx . Assume, by reductio, that K Fx .
Then K U {—¢p} is consistent in Ly, and therefore, by Lindenbaum’s lemma,
there is a I' € MCr,, such that K U {-¢} C I'. But then K C I, and so
therefore, by assumption, ¢ € I'. But we also have -¢ € I', which means that
both I' Fr,, ¢ and I" k1, —¢, i.e., that I' is not consistent in Ly, which is
impossible because, by assumption, I is (maximally) consistent in L. m

In general, if K is a maximally consistent set of formulas, i.e., K € MCy_,,
then there is exactly one truth-value assignment ¢t € V' such that for all n € w,
t(P,) = 1iff P, € K. We shall use ‘tx’ to represent this unique truth-value
assignment. In L, as our next theorem indicates, membership in a maximally
consistent set K amounts—for all formulas, and not just sentence letters—to
truth in the possible world represented by ¢ x.

Definition 30 If K € MCy,,, then tx =4 thet € V such that for alln € w,
t(Py) =1iff P, € K.

Theorem 31 If K € MCy,,, then ¢ € K iff =i, ».

Proof. Assume the hypothesis and let ' = {p € FM : p € K iff ¢, p}. It
suffices to show by induction on FM that FM C I'. There are four cases to
consider. Case 1: by definition, for all n € w, P, € K iff &=, P,, so therefore
P, € I'. Case 2: Assume ¢ € I', and show that - € I'. Then, by the inductive
hypothesis, ¢ € K iff =, ¢, and therefore p ¢ K iff ¥, ¢, and hence, by
lemma 28, —¢p € K iff ¢, -, which shows that - € I'. Case 3: Assume
p, € T', and show that (¢ — ¢) € I'. Then, by case 2, =9 € [, i.e.,, 7p € K
iff =4, ¢, and by the inductive hypothesis, ¢ € K iff =, . But, by the
above lemma 28, (p > ¢) €e K iff o ¢ K or ¢ € K, i.e., iff By, ¢ or F¢ 9,
and hence, iff =, (¢ — %), which shows that (¢ — ) € I". Case 4: Suppose
¢ € I'and show Oy € I'. Now. by theorem 24, -y, Oy or -1, -Oy. Suppose
first that Fr,, Op. Then, by lemma 28, Op € K. Also, by theorem 19, Oy is
L-true, which means, by definition, that for all ¢ € V', =, Oy; hence, because
tx €V, |=t, Op. It follows, accordingly, that Op € K iff =, Op. Suppose
now that Fr_, -O¢. Then, because K € M(Cy,,, "0y € K; and therefore, by
lemma 28, Op ¢ K. Also, by theorem 19, =0y is L-true; hence, by definition,
forall t € V, ¢ —0Op. But tg € V, and so =, ~Oyp, and therefore ¥, Op.
Accordingly, Op ¢ K iff ¥, Op; and therefore, O¢ € K iff =, O¢. Thus in
case either Fr_, Op or -, =0y, Op € I'. It follows by the induction principle
that FM CT.m

In logical atomism, as we have already noted, logically possible worlds are
completely determined by the atomic states of affairs that obtain in those worlds.
This means in particular that no “new” facts are represented by conditional
formulas or the negations of formulas other than sentence letters. It also means,
as noted above, that there are no modal facts, i.e., facts represented by modal
formulas that are not reducible to the atomic facts represented by sentence
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letters. In other words, in logical atomism, worlds that are indiscernible in their
atomic facts are indiscernible in their modal facts as well.

Any calculus that purports to represent logical atomism, accordingly, must
be such that maximally consistent sets of formulas of that system will be iden-
tical if, and only if, they coincide on the atomic sentences in those sets, i.e., if,
and only if, they determine the same truth-value assignment (as a semantic rep-
resentation of a logically possible world). In terms of this criterion of adequacy,
we justify our claim in the following lemma, which is an immediate consequence
of theorem 31, that L,; is an adequate representation of logical atomism.

Lemma 32 If K, K' € MCyr,, and tx = tk', then K = K'.

We are now ready to prove the completeness theorem for L,;. In doing so we
first introduce the notion of logical implication, or, for brevity, L-implication,
that corresponds to derivability the way that provability in L,; corresponds to
L-truth as defined above (or so we will prove). Intuitively, the idea is that a
set of premises logically implies a conclusion ¢ if, and only if, ¢ is true in every
logically possible world in which all of the premises are true. In theorem 34, we
show that logical implication (as explicated here) coincides with derivability in
Lg;, which is our strong completeness theorem. An immediate corollary is that
logical truth (as explicated here) coincides with provability in L,;, which is the
same as derivability from zero many premises, i.e., from the empty set.

Definition 33 IfT'U{p} C FM, then I' L-implies v iff for allt € V, if =¢ 1,
for all €T, then =

Theorem 34 (Strong Completeness): T tr,, p iff T L-implies .

Proof. Suppose first that I' -1, ¢ and show that I' L-implies ¢. Then, by
definition, Fr_, (¥ A ... A,,_1 — ), for some 1,,...,¢,,_; € I'; and hence,
by theorem 19, (¢ A ... A¢,_; — ) is L-true. Suppose now that ¢t € V and
that for all » € T, |5 4. Then, by assumption, ¢ (g A ... Atp,,_;) and, by
definition of L-truth, |=¢ (g A...A%,_; — @), from which it follows that = ¢;
and hence that I' L-implies ¢.

For the converse direction, suppose now that I' L-implies ¢ and show I' I, _,
. Then, by theorem 29, it is sufficient to show that for all K € MCy_,, if
I' C K, then ¢ € K. Suppose, accordingly, that K € MCp,_, and that I' C K.
By theorem 31, for all ¢, ¢ € K iff |=;, t. Therefore, for all ¢ € T', ¢, 9
hence, by assumption and definition of L-implication, ¢, ¢, from which it
follows, by theorem 31, that p € K. m

Corollary 35 (Weak Completeness): Fr,, p iff p is L-true.

In addition to the syntactical notion of consistency in L,:, we also have a
semantical notion. That is, a set of formulas is semantically consistent if, and
only if, there is some logically possible world in which every formula in the set is
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true. Theorem 37 below, which indicates that the syntactic and semantic notions
of consistency coincide, amounts to another version of the strong completeness
theorem for L.

Definition 36 K is semantically consistent iff for some t € V, =4 4, for all
YeK.

Theorem 37 K is semantically consistent iff K is (syntactically) consistent in
L.

Proof. Suppose first that K is semantically consistent, and, by reductio, that K
is not (syntactically) consistent in L, Then, for some t € V, = ¢, for all ¢ €
K, and yet for some ¢ € FM, K ., v and K Fr_, —). But then, by strong
completeness, K |=; ¢ and K }=¢ =), which is impossible, because then |=; 9
and ¢ . For the opposite direction, assume K is (syntactically) consistent
in Lg. Then, by Lindenbaum’s lemma, there is a maximally consistent set
I' e MCL,, such that K C I'. But then, by theorem 31, ;. 1 for all ¢) € I'; and
therefore . ¢ for all ¢ € K, which shows that K is semantically consistent. m

This completes our account of the semantics for logical necessity as based
on Carnap’s criterion of adequacy and of the modal propositional calculus Lg;
that is complete with respect to that semantics. It is instructive to consider how
this semantics differs from one similar to it but which is complete for S5. The
fundamental difference, it turns out, is a secondary reading, or "cut down", on
the notion all possible worlds, and what comes with this secondary reading are
the possibility of modal facts as part of the world over and above the atomic
facts that make it up in logical atomism.

6 A Semantics for S5: All Possible Worlds “Cut
Down”

Our reformulation of Carnap’s criterion of adequacy for logical necessity as a
truth-condition for formulas of the form [y construes necessity as a universal
quantifier over all logically possible worlds—where each logically possible world
is represented by a truth-value assignment, i.e., by a specification of all of the
atomic states of affairs that obtain in that world. On this interpretation, as we
saw above, there are more logical truths than there are theorems of S5.

It is possible to give a restricted, or secondary, interpretation of the notion
of all possible worlds, however, under which the valid formulas are none other
than the theorems of S5—i.e., an interpretation with respect to which we can
obtain a completeness theorem for S5. The restricted, or secondary, interpre-
tation for necessity is similar to the restricted interpretation for quantification
over arbitrary properties, or classes, in second-order predicate logic, where the
interpretation involves structures called “nonstandard” models. The idea of this
interpretation is to deal not necessarily with the whole of logical space, i.e., with
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all logically possible worlds (as explicated in logical atomism), but with arbi-
trary regions of logical space, by which we mean arbitrary nonempty classes of
possible worlds. The new interpretation of necessity then is not as a quantifier
over all logically possible worlds but rather with all the possible worlds (truth-
value assignments) in a given region of logical space, i.e., in a given nonempty
class of possible worlds. For this reason, the notion of truth (or falsity) is no
longer simply truth (or falsity) in a given logically possible world, but truth (or
falsity) in a possible world relative to a given class of possible worlds (or region
of logical space), a notion that allows for the importation of material content
into the meaning of necessity, and hence something other than logical necessity.

Definition 38 If T CV andt € T, then:

(1) EL P, iff t(Py) =1;

(2) B o iff ¥

(8) EL (¢ — ) iff either EL o or EL ¢ ; and
(4) EL Oy iff for allt' € T, L .

Note: We read ‘={ ¢’ as ‘o is true in (region) T at (world) t’.
One invariance condition we can now define is truth at all worlds in a region
of logical space, i.e., at all worlds in the class of worlds making up that region.

If T is a nonempty subset of V, then invariant truth at all of the worlds in T
will be called T'-validity.

Definition 39 If T'CV and T # 0, then ¢ is T-valid iff for all t € T, EL .

Of course, logical truth, i.e., truth in all logically possible worlds of logical
space, is the most general invariance condition of truth, which means that if ¢
is L-true, then ¢ is T-valid for all T'C V.

Lemma 40 If p is L-true, then ¢ is T-valid for all nonempty T C V.

After logical truth as invariant truth in all logically possible worlds, the next
most general notion of invariant truth is 7-validity for all regions 7" of logical
space, i.e., truth at every world in every region of logical space. We will call
this notion walidity simpliciter. For convenience, we will also speak of valid
implication in this restricted sense between a set of premises and a conclusion
as v-implication.

Definition 41 If K U {p} C F M, then:

(1)  is valid iff for all nonempty T CV, ¢ is T-valid; and

(2) K v-implies o iff for all nonempty T CV and allt € T, if =L 4, for all
Y € K, then EL .

It follows from the previous lemma that if ¢ is L-true, then ¢ is valid sim-
pliciter. But as already noted in theorem 10, all theorems of S5 are L-true; and
so therefore all theorems of S5 are valid simpliciter.
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Lemma 42 Iftg5 @, then ¢ is valid.

Derivability in S5 is defined in an entirely similar way as derivability in L,
except of course relative to the axioms of S5 as opposed to those of L.

Definition 43 If KU{p} C FM, then K tg5 ¢ if,and only if, for somen € w
and some g, ..., 0, _1 € K, Fss Yo A .. AN,_1 = p.

As the following theorem indicates, conclusions derivable from premises
within S5 are v-implied by those premises; that is, S5 is sound with respect to
this interpretation of implication. Because validity is equivalent to v-implication
from the empty set of premises, we have the following obvious result.

Theorem 44 If I Fg5 @, then I' v-implies .

Proof. Suppose I' Fg5 . Then for some v, ...,10,,_1 € ', Fss5 Yo A...AY,_; —
¢, and therefore ¥y A ... Atp,,_; = @ is valid. But for any T'C V and any t € T’
such that for all x € T', =l x, we then have =] 4),, for all i < n — 1, and hence
by the truth conditions for —, |:tT o; and therefore, by definition, I v-implies

0. u

7 A Completeness Theorem for S5

We saw in regard to the notion of L-truth that if K, K' € MCp,, and tx = tx,
then K = K'. By associating each possible world of logical atomism with the
maximally L,;-consistent class of formulas that represent the facts or states of
affairs that obtain in that world, this result indicates that worlds indiscernible
in their atomic (nonmodal) facts are indiscernible in their modal facts as well.
This, it should be emphasized, is a consequence of the semantical clause for
necessity that interprets it as a quantifier over all logically possible worlds (as
explicated in logical atomism).

No such similar result holds in our present secondary semantics for necessity,
i.e., the semantics with respect to which S5 will be shown to be complete. In
particular, where MCg5 is the set of all sets of formulas that are maximally
consistent in S5, we will show that there are K, K' € M Cgs such that tx =t,,
and yet K # K'. That is, in the worlds represented by S5 (or the maximally
S5-consistent sets of formulas), there are “modal facts” over and above the
nonmodal facts that obtain in those worlds. Semantically, the reason for this
difference is none other than the fact that necessity is now being interpreted as
a restricted quantifier, i.e., as a quantifier not over all logically possible worlds,
but only over all possible worlds in a region of logical space, i.e., all possible
worlds in a given nonempty class of possible worlds.

We are dealing now not with maximally L,:-consistent sets of formulas as
complete descriptions of possible worlds, it should be emphasized, but with max-
imally S5-consistent sets instead. The definitions of consistency and maximal
consistency in S5 are assumed to be defined in essentially the same way they are
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defined for L,; and that the properties of maximal S5-consistent sets of formulas
are as they are for maximal L,;-consistent sets as described in lemma 28. The
question we are concerned with is what conditions of complete (i.e., maximally
S5-consistent) descriptions of possible worlds suffice for the indiscernibility of
those worlds? We answer this question in the following two theorems. In par-
ticular, as the second theorem indicates, the possible worlds represented by
maximally S5-consistent sets of formulas are indiscernible if they contain the
same atomic facts and the same necessary facts (and therefore the same possible
facts as well).

Theorem 45 If ' € MCs;, © = {K € MCgs : for all ¢, if Op € T', then
pe K} and T = {tg : K € O}, then for al K € O :

(1) Jp e T iff Op € K;
(2) if p € K and -Op € K, then there is a K' € © such that =p € K'; and
(3) v € K iff Fi,. .

Proof. Assume the hypothesis and that K € ©. For (1), suppose first that
Oy € T'; then, because Fg; (Op — OOp) and I' € MCgs;, OOp € T'; and
therefore, because K € ©, Oy € K. Suppose, conversely, that Oy € K but
that Op ¢ I'. Then, because I' € M Cgss, -0y € T'. But kg5 (-Op — O-0p),
and, therefore O-p € I, from which it follows by definition of © that -Oy €
K. That is, K is then inconsistent, which is impossible because K € MCgs.
Therefore, Op € I' iff Op € K.

For (2), suppose that ¢ € K and -0y € K. Let Z = {0y : O € K} and
show first that Z U {—p} is S5-consistent. By reductio, assume that = U {-p}
is not S5-consistent, i.e., that ZU {-p} Fg5 =(x — x), for some x. Then, by
sentential logic and the Deduction Theorem (which is provable for S5 in the
standard manner), Fgs Ttpg A... AOY,,_; — ¢, for some O, ...,p,_, € 2 C
K. Accordingly, by sentential logic, the distribution of O over —, and other
well-known properties of S5, Fgs OO A ... AOOyY,,_; — Og; and therefore,
because Fgs (O, <> OOv,), for alli < n, Fgs Oy A...AOa_1 — Ogp; that is,
Z kg5 Op. But then, because = C K, K g5 Oy, which is impossible because
-0p € K and K € MCgs. We conclude, then, that Z U {—¢} is S5-consistent
after all. Accordingly, by Lindenbaum’s Lemma, there is a set K' € M Cgs such
that ZU {—-¢} C K'. But, for all x, if Ox € I, then, by (1), because K € 0,
Ox € K, and therefore, by definition, Oy € = C K'. But Fg5 Ox — X, and
therefore, x € K', from which it follows that K’ € ©.

For (3),let A ={p e FM :for all K € O, p € K iff =] ¢}. It suffices to
show by induction that M C A. There are then four cases to consider. Case
1: Suppose n € w and show P, € A. But by definition of tx, where K € O,
P, € A. For case 2: Suppose now p € A and show —¢p € A. But, by the
inductive hypothesis, for K € 0, p € K iff |:tTK ¢; and therefore ¢ ¢ K iff
L ¢, from which it follows, because K € MCss, that ~p € K iff =l —p.
That is, =@ € A. For case 3: Suppose ¢, ¥ € A and show that (¢ — ) € A.
Then, where K € ©, by the inductive hypothesis, we have both (p € K iff
=L ¢) and (¢ € K iff El¢); and therefore by the truth-clause for (o — ¢)
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and the S5 analogue of lemma 28, (¢ — ) € K iff E[_ (¢ — 1), from
which it follows that (¢ — %) € A. Case 4: Finally, suppose ¢ € A and
show Oy € A. Assume, accordingly, that K € © and, for the left-to right
direction, that Oy € K. Then, by (1) above, Op € I'. Suppose now that t € T,
ie., that t = tx , for some K' € ©, and show ! ¢. Then, again by (1)
above, Oy € K'; and therefore, because g5 (Op — ¢), ¢ € K'. Then, by the
inductive assumption, |:tTK, o, i.e., |=F ¢; from which we conclude, by the truth
clause for Oy, that =/ O¢p. Hence, if Oy € K, then |={ Oep.

For the converse direction, assume that = Oy and show that Oy € K.
Note that, by the truth clause for Op, I ¢, for all ¢ € T, and hence, in
particular, |:tTK p; therefore, by the inductive hypothesis, ¢ € K. To show
Op € K, suppose, by reductio, Op ¢ K. Then, because K € MCss, -Op € K;
and therefore, by (2) above, there is a K’ € O such that —p € K'. But then
v ¢ K', and, by the inductive hypothesis, bétTK, , which is impossible, because

EI ¢, for all t € T, and tzr € T. Finally, by cases 1-4, it follows by the
induction principle that FM C A. =

Theorem 46 If K, K' € MCss, tx = tg, and for all o € FM, Op € K iff
Op € K', then K = K.

Proof. Assume the hypothesis and let A = {I' € M Cgs : for all ¢, if Op € K,
then ¢ € T} and T' = {tr : ' € A}. Then K, K' € A, and therefore by
condition (3) of theorem 45 above, we have for all ¢ € FM, both (p € K iff
EL. ¢) and (p € K' iff |:tTK, ¢); and hence, because tg = typ, p € K iff
¢ € K', from which it follows that K = K'. m

Corollary 47 If K, K' € MCgs, tx =ty , and for all o, Op € K iff Op € K,
then K = K'.

Proof. By preceding theorem and definition of ¢. m

Theorem 48 If I' v-implies v, then I' Fgs5 .

Proof. Assume the hypothesis. By the S5-analogue of theorem 29 (the proof
of which is essentially the same as for L,;), it suffices to show that for all
K € MCgs, if I' C K, then ¢ € K. Assume, accordingly, that K € MCCgs
and that ' C K. Let A = {K' € MCgs : for all ¢, if () € K, then ¢ € K'}
and T = {tg : K € A}. Then K € A, and by condition (3) of theorem 45,
for all 1 € K iff 1. But I' C K; therefore, =1 1, for all ¢ € I'. By the
hypothesis, then, it follows that |:tTK p; and therefore p € K. m

By theorems 44 and 49 together, we have our strong completeness theorem,
from which the weak completeness follows as a corollary.

Theorem 49 (Strong Completeness): K v-implies ¢ iff K Fg5 .
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Corollary 50 (Weak Completeness): ¢ is valid iff Fss .

Just as there is a secondary notion of validity corresponding to the primary
notion of L-truth, and a secondary notion of v(alid)-implication corresponding
to L-implication, so too we have a secondary notion of semantic consistency
with respect to which we another version of the strong completeness theorem
for S5.

Definition 51 I' is semantically consistenty, iff for some T C V' and for
somet €T, forallp e, E ¢ .

Theorem 52 T' is semantically consistents iff I' is S5-consistent.

Proof. Essentially the same as for theorem 37. m

Finally, let us prove here what we claimed earlier, namely that with respect
to the "cut down" semantics for S5, there are possible worlds (as represented
by maximally S5-consistent sets) that have the same atomic facts and yet that
are not identical.

Lemma 53 There are K, K' € MCgs such that tx =ty and yet K # K'.

Proof. Let I' = {P, : n € w} U {OP;}, and let ¢(P,) = 1 for all n € w. Also,
let I'" ={P, :n €w}U{-0OP } and let

1foralln#1
tl(P”):{ Oforn:?i ;

and finally let 7' = {¢} and 7" = {¢,¢'}. Then for all p € I', ] ¢ and for all
pel |:$’ p; ie., I',T" are semantically consistenty. Therefore, by theorem 53
above, I and I are S5-consistent, and hence, by Lindenbaum’s lemma, there
are K, K' € MCgs such that ' C K and I'' C K'. But clearly because 0P, € K
and -0OP; € K', K # K', and yet, because ' NI = {P, : n € w}, we have it
that tg =t =tg. =

8 Concluding remarks

Carnap’s criterion of adequacy for logical necessity leads, as we have seen, to an
intuitively natural semantics for logical necessity, even if only with respect to
the metaphysical framework of logical atomism (which may be the only meta-
physical framework in which a coherent account of logical necessity as the modal
counterpart of logical truth can be given). This kind of semantics for logical ne-
cessity has been given for modal predicate logic as well, but with mixed results
in regard to the question of completeness.!! The kind of results we established
here for propositional modal logic can be shown for modal monadic predicate
logic as well, which, incidentally, like modal-free monadic predicate logic is also

11See Cocchiarella 1975, and sections 1-2 of Cocchiarella 1984.
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decidable. But once relational predicates and infinite domains are brought into
the picture, then, instead of a completeness theorem, what can be shown is an
essential incompleteness theorem. Such a result does not affect the philosophi-
cal significance of the semantics of logical necessity, but only the possibility of a
complete (recursive) axiomatization for the full modal-predicate logic of logical
necessity, and in that respect its philosophical significance is no less impaired
than is that of arithmetic which is also incomplete with respect to its intuitively
natural semantics.

The philosophical significance of the "cut-down" semantics of the restricted
notion of necessity is another matter altogether. The semantics is philosophi-
cally defective in at least one respect: namely, that no explanation or rationale
is given for the restricted interpretation of ‘all possible worlds’ in the semantical
clause for necessity. This is not to say that such a rationale cannot be given
(with respect, e.g., to a temporal or causal framework). To be sure, a "cut-
down" of the notion of all possible worlds does provide the basis for a secondary
notion of validity, and in particular a notion of validity with respect to which S5
is complete.'? But such a result cannot alone be the grounds for accepting such
a secondary notion of all possible worlds. What is needed is an independent
semantical principle that provides a conceptual ground for such a “cut-down”
of the meaning of ‘all possible worlds’ in the semantics for .13
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