Bibliography on the Logical Work of Stanislaw Lesniewski

Contents:
Vol. I.
Introduction by The Editors VII-XVI
A contribution to the analysis of existential propositions (1911) 1
An attempt at a proof of the ontological principle of contradiction (1912) 20
The critique of the logical principle of the Excluded Middle (1913) 47
Is all truth only true eternally or it is also true without a beginning? (1913) 86
Is the class of classes not subordinated to themselves, subordinated to itself? (1914) 115
On the foundations of mathematics 1927-1931 (The series consists of the following papers): 174
I. Introduction (1927) 174
II. On Russell ‘antinomy’ concerning 'The Class of Classes which are not elements of themselves' (1927) 197
III. On various ways of understanding the words 'Class' and 'Collection' (1927) 207
V. Further theorems and definitions of the 'General Theory of Sets' from the period up to the year 1920 inclusive (1929) 264
VI. The axiomatization of the 'General Theory of Sets' from the year 1918 (1930) 315
VII. The axiomatization of the 'General Theory of Sets' from the year 1920 (1930) 321
VIII. On certain conditions established by Kuratowski and Tarski which are sufficient and necessary for P to be the Class of objects a (1930) 327
IX. Further theorems of the 'General Theory of Sets' from the years 1921-1923 (1930) 332
X. The axiomatization of the 'General Theory of Sets' from the year 1921 (1931) 350
XI. On 'Singular' propositions of the type 'A e b' (1931) 364

Vol. II.
On functions whose fields, with respect to these functions are groups (1929) 383
On functions whose fields, with respect to these functions are Abelian groups (1929) 399
Fundamentals of a new system of the foundations of mathematics (1929) 410
On the foundations of Ontology (1930) 606
On definitions in the so-called theory of deduction (1931) 629
Introductory remarks to the continuation of my article 'Grundzüge eines neuen Systems der Grundlagen der Mathematik' (1938) 649
An annotated Lesniewski Bibliography [up to 1978] by Frederick V. Rickey 711 (*)
Bibliography on the Logical Work of Stanislaw Lesniewski

STUDIES ABOUT THE WORK OF LESNIEWSKI (in progress)

21. "Remarks about syllogistic with negative terms" (Studia logica, vol. XXIV). The primitive terms of S sub 2 are the function of a categorical universal-affirmative proposition, the complement of a set, and the empty set. In S sub 2 one is given the definitions of addition and multiplication of sets, the universal set and the relation epsilon (... is ...), which corresponds semantically to the primitive term of Lesniewski's Ontology. It is proved that the elementary ontology and the elementary algebra of classes are fragments of S sub 2.

The article presents a system S of syllogistic based on three axioms. The function "a" / every...is.../ and the sign of nominal negation are primitive terms of system S. The known axiomatic systems of syllogistic with negative terms constructed by I. Thomas, A. Wedberg and C. A. Meredith are fragments of system S. It seems that the axioms of system S better characterize the categorical propositions containing negative terms since this characterization excludes some non-intuitive interpretations of such propositions, admissible in the above mentioned systems. It is also mentioned that there exists an
extension of system S containing the elementary algebra of classes and the elementary Ontology of Lesniewski.

"An argument against multiply instantiable universals is considered in neglected essays by Stanislaw Lesniewski and I.M. Bochenski. Bochenski further applies Lesniewski's refutation of universals by maintaining that identity principles for individuals must be different than property identity principles. Lesniewski's argument is formalized for purposes of exact criticism, and shown to involve both a hidden vicious circularity in the form of impredicative definitions and explicit self-defeating consequences. Syntactical restrictions on Leibnizian indiscernibility of identicals are recommended to forestall Lesniewski's paradox."

"This paper argues that there are two fundamental ways to regard variables in formalized languages. One way, associated with Russell and Quine, regards variables as autonomous referential expressions. On this view, quantification is the fundamental device for indicating ontological commitments. The second way to regard variables is linked to Frege and Lesniewski; variables are regarded as replacements for constant expressions. Such a view leads to an understanding of quantifiers in terms of substitution instances of the quantified expressions. It is argued that the second way of regarding variables is preferable to the first way, and that no logical results need be given up if this way is adopted."

Translated from the Polish by Olgierd Wojtasiewicz; translation edited by G. Bidwell and C. Pinder

"Heinrich Scholz and J. M. Bochenski have claimed that the laws of formal logic are the most general laws about things, properties, relations, states-of-affairs, etc. Others have mixed up logic and set theory. But Lesniewski's interpretation of the quantifiers shows that properly speaking logic belongs neither to ontology nor to mathematics."

"I wish to conclude with a brief summary of the results. The aim of the paper was to analyse rather than criticize. I started by examining two inferences which appeared to disprove the validity of the rules of universal instantiation and existential generalization in application to reasoning with empty noun-expressions. Then I distinguished two different interpretations of the quantifiers and argued that under what I called the unrestricted interpretation the two inferences were correct. Further arguments in favour of the unrestricted interpretation of the quantifiers were brought in, and in particular it was found that by adopting the unrestricted interpretation it was possible to separate the notion of existence from the idea of quantification. With the aid of the functor of inclusion two functors were defined of which one expressed the notion of existence as underlying the theory of restricted quantification while the other approximated the term exist(s) as used in ordinary language. It may be useful to supplement this summary by indicating some aspects of the problem of existence which have not been included in the discussion. I analyzed the theory of quantification so far as it was applied in connection with variables for which noun-expressions could be substituted and my enquiry into the meaning of exist(s)' was limited to cases where this functor was used with noun-expressions designating concrete objects or with noun-expressions that were empty. It remains to explore, among other things, in what sense the quantifiers can be used to bind predicate variables and what we mean when we say that colours exist or that numbers exist. These are far more difficult problems, which may call for a separate paper or rather for a number of separate papers." (p. 119)

Lesniewski's Mereology presupposes his Ontology, which in turn presupposes his Protothetic. A proof is outlined to show that if we interpret name-variables as proposition-variables and if at the same time we interpret the ontological 'epsilon' as the functor of conjunction and the mereological 'el' as the functor of assertion then the axioms and directives of Ontology and Mereology become respectively theses and directives of Protothetic.

Proceedings of an International Colloquium (Salzburg, 21-24 September 1976)

Discussion pp. 215-218

"Interpreted distributively the sentence 'Indiana is a member of the class of American federal states' means the same as 'Indiana is an American federal state'. In accordance with the collective sense of class expressions the sentence can be understood as implying that Indiana is a part of the country whose capital city is Washington. Neither interpretation appears to accommodate all the intuitions connected with the informal notion of class. A closer accommodation can be achieved, it seems, if class expressions are interpreted as verb-like expressions of a certain kind as available within the framework of Lesniewski's Ontology."

"An attempt is made in the present essay to accommodate various senses of the notion of existence and of that of non-existence within the framework of logic. With this aim in view a system of Lesniewski's Ontology, referred to as System S, is outlined. Equipped with appropriate definitions and illustrated with a selection of theses it offers a logical theory of existence and non-existence. The usefulness of the theory is then tested by interpreting in its terms some of the principal notions and assertions of Meinong's ontology. A few brief comments on the notion of 'possible object' and on 'semantics' of fiction conclude the essay."

Edited by Massimo Libardi

"The most difficult problem that Lesniewski came across in constructing his system of the foundations of mathematics was the problem of 'defining definitions', as he used to put it. He solved it to his satisfaction only when he had completed the formalization of his protothetic and ontology. By formalization of a deductive system one ought to understand in this context the statement, as precise and unambiguous as possible, of the conditions an expression has to satisfy if it is added to the system as a new thesis. Now, some protothetical theses, and some ontological ones, included in the respective systems, happen to be definitions. In the present essay I employ Lesniewski's method of terminological explanations for the purpose of formalizing Łukasiewicz's system of implicational calculus of propositions, which system, without having recourse to quantification, I first extended some time ago into a functionally complete system. This I achieved by allowing for a rule of 'implicational definition', which enabled me to define any proposition forming functor for any finite number of propositional arguments."

"This paper has four parts. In the first part, I present Lesacuteniewski's protothetics and the complete system provided for that logic by Henkin. The second part presents a generalized notion of partial functions in propositional type theory. In the third part, these partial functions are used to define partial interpretations for protothetics. Finally, I present in the fourth part a complete system for partial protothetics. Completeness is proved by Henkin's method using saturated sets instead of maximally saturated sets. This technique provides a canonical representation of a partial semantic
space and it is suggested that this space can be interpreted as an epistemic state of a non-omniscient agent.

This article provides an introduction to the deductive theories, which are so little known, of S. Lesniewski. The reasons that led this Polish logician to develop a theory of collective classes as well as the logical theories that underlie it are set forth here, and the main characteristics of Lesniewski’s three systems — mereology, protothetics and ontology — are presented. Some epistemological considerations are included in this study.

"The logical theories of Stanislaw Leśniewski differ profoundly from classical formal systems. Unlike the latter, they do not have an entirely predetermined vocabulary. Nor do they have a determined list of functors of syntactical-semantical categories. Due to formalized directives for definitions, the logics of Leśniewski are constructed progressively, making new theses and consequently functors of new syntactical-semantical categories accesible. In this article we present the genetic aspect associated with these theses-definitions. We also show that the property of creativity makes it possible to bridge some of the fundamental gaps in contemporary classical logics."

"Due to the current availability of the English translation of almost all of Lesniewski’s works it is now possible to give a clear and detailed picture of his ideas. Lesniewski’s system of the foundation of mathematics is discussed. In a brief outline of his three systems Mereology, Ontology and Protothetics his positions concerning the problems of the forms of expression, proper names, synonymity, analytic and synthetic propositions, existential propositions, the concept of logic, and his views of theory of science and metaphysics are sketched. The influence of Mill, Lukasiewicz, Austrian philosophy and especially Petrazycki on his thinking is evaluated and an interpretation is suggested setting him squarely in a tradition of classical Aristotelian logic."

"This article proposes to clarify the problem of interpreting Lesniewski’s ontology. A distinction is made between two kinds of interpretation: substitutional and "natural". Substitutional interpretation is shown to involve difficulties and limitations. A "natural" ontology, the major principles of which are presented here, is shown to be of considerable interest."

Schumann, Andrew. 2013. "On Two Squares of Opposition: The Leśniewski’s Style Formalization of

"In the paper we build up the ontology of Leśniewski’s type for formalizing synthetic propositions. We claim that for these propositions an unconventional square of opposition holds, where a, i are contrary, a, o (resp. e, i) are contradictory, e, o are subcontrary, a, e (resp. i, o) are said to stand in the subalternation. Further, we construct a non-Archimedean extension of Boolean algebra and show that in this algebra just two squares of opposition are formalized: conventional and the square that we invented. As a result, we can claim that there are only two basic squares of opposition. All basic constructions of the paper (the new square of opposition, the formalization of synthetic propositions within ontology of Leśniewski’s type, the non-Archimedean explanation of square of opposition) are introduced for the first time."

"This paper assesses those features of Leśniewski’s ontology which make it difficult to understand for logicians accustomed to more orthodox systems of logic. It is seen that certain general features of presentation and content can, by selective acceptance or modification, be accommodated with a fairly orthodox viewpoint. The chief difficulty lies in the interpretation of Leśniewski’s names, and the constant ‘?’’. Four interpretations are suggested in turn: Leśniewski’s names as monadic predicates; as class terms; as common nouns; and as empty singular or plural terms. This last and least orthodox interpretation is argued to be the most suitable, but it is shown how it can be made to live in harmony with either the common noun or the class interpretation."

"This article proposes to clarify the problem of interpreting Lesniewski’s Ontology. A distinction is made between the two kinds of interpretation: substitutional and "natural". Substitutional interpretation is shown to involve difficulties and limitations. A "natural" Ontology, the major principles of which are presented here, is shown to be of considerable interest."

"Students of traditional logic, by which I mean the central core of categorical syllogistic with whatever further forms were studied at the time, were drilled in putting the sentences occurring in arguments into «correct logical form», and present-day students do no different when replacing their natural language sentences by the formulas or semiforulas of predicate logic. Both procedures involve doing some violence to natural modes of expression. A sentence like Whoever flies saves time must be replaced by something like Every flier is a time-saver by traditional logicians and by For all x: if x flies then x saves time by modern logicians. As this makes clear, different logical systems may compete in offering prepared forms proximate to a natural specimen, so there may be a real choice as to which system is preferable for a given purpose. This is familiar to observers of modern logic since there are competing logics of definite descriptions, modality, and so on. Of course, if we confine attention just to the opposition between categorical syllogistic and predicate logic, there seems to be no contest. Predicate logic is expressively much the more powerful system, and as these two are the only two logical systems to have enjoyed widespread acceptance as tools for analysing validity of natural arguments, it might seem that only predicate logic remains as a general vehicle for workaday argument assessment. But the large number of introductory logic textbooks which still contain material on categorical syllogistic bears witness to the fact that, within its more limited sphere, the traditional logic of terms is widely felt to be a more natural and useful alternative to monadic predicate logic. Historical interest alone could not compensate for the inconveniences of introducing two quite different systems, with their different sentential analyses, laws, and terminology, to cover the same ground.

It is apparent that one disadvantage of predicate logic for these purposes is its use of bound individual
variables, which natural languages do not have, and which they can simulate and match only by rather
tortuous use of pronouns and pronominal phases. Of course this helps to account for the greater
perspicuity of predicate logic once we leave the simplest sentences behind, but at the most elementary
level it is a hindrance. The singular term/predicate analysis of simple predications compels common
noun phrases and adjectives used attributively to appear as syntactically inseparable parts of
predicates, which correspond most closely to verb phrases in natural language. Again, this is not a huge
sacrifice, but it is pervasive, is felt to be unnatural, and contributes to beginners' difficulties in learning
logic.
So it is worth considering from a practical and pedagogical point of view whether, in order to gain the
considerable benefits conferred by predicate logic (quantification, multiple generality, relational
predicates - it is necessary to put up with the disagreeable features of standard predicate logic. I shall
argue that it is not, and that a more natural and flexible medium for which to prepare natural language
sentences and arguments is provided by the term logic invented around 1920 by Stanislaw Lesniewski
(1886-1939) and usually known as Ontology. (*)

(*) The possible confusion of the system of logic with the branch of metaphysics of the same name is
not a danger in this context, and in any case I will write the name of the system with a capital letter.
Sometimes Ontology is called the Calculus of Names, but this is misleading, since much more than
names are involved. It would be nice to have a better name for Ontology.

15:227-235.
"This discussion review examines the English edition of Lesniewski's collected works. Points
emphasized include: the early (pre-symbolic) period, the quality of translation and typesettings, and
the scandalously outdated bibliography."

56:99-122.

74. ———. 2006. "Things and Truths: Brentano and Lesniewski, Ontology and Logic." In Actions, Products,
and Things: Brentano and Polish Philosophy, edited by Chrudzimski, Arkadiusz and Lukasiewicz,

"Edwin Allaire, Gustav Bergmann and Reinhardt Grossmann have objected to the nominalistic analysis
of "this is red and that is red" which treats "red" as a common name. Such an analysis, they argued,
must assimilate the copula in this sentence to the "is" of identity. Sinisi claims that this objection is
mistaken. Using a logical system developed by Stanislaw Lesniewski, he shows that it is possible to
construe "red" as a common name without taking the copula as the "is" of identity."

Logic no. 7:323-327.

10:239-246.
"Between 1927 and 1931 Lesniewski published a series of articles on the foundations of mathematics in
the Polish journal Przeglad Filozoficzny.
65% of the work is devoted to various axiomatizations of Lesniewski's mereology (a theory of collective
classes) while the remainder takes up various related issues. In the third part of this series Lesniewski
informally sets forth his notion of a collective class, criticizes certain descriptions of distributive classes,
and argues that there is no justification in Frege's statement that the conception of a class as consisting
of individuals, so that the individual thing coincides with the unit class, cannot in any case be
supported.
Lesniewski's refutation of Frege's statement appears to be unknown to western logicians and
philosophers. None of the recent books on Frege (e.g., Angelelli, Egidi, Sternfelld, Thiel, Walker)
mentions it. Luschei, in his The Logical Systems of Lesniewski, mentions it but does not present it.
My purpose here is to state and explain Lesniewski's refutation in the hope that it will help stimulate
interest in his work."

17:19-34.

Sobocinski in his paper on Lesniewski's solution to Russell's paradox (L'analyse de l'antinomie russellienne par Lesniewski, 1949) argued that Lesniewski has succeeded in explaining it away. The general strategy of this alleged explanation is presented. The key element of this attempt is the distinction between the collective (mereological) and the distributive (set-theoretic) understanding of the set. The mereological part of the solution, although correct, is likely to fall short of providing foundations of mathematics. I argue that the remaining part of the solution which suggests a specific reading of the distributive interpretation is unacceptable. It follows from it that every individual is an element of every individual. Finally, another Lesniewski-style approach which uses so-called higher-order epsilon connectives is used and its weakness is indicated.
conventionalism about meaning and his formal work on definitions (it seems that it was Ajdukiewicz and Łukasiewicz who first focused on the consistency, translatability and non-creativity conditions on definitions, at least on the Polish ground). Other examples include Jaśkowski’s approach to natural deduction and his work on discursive logics, Lindenbaum’s lemma on maximally consistent sets of formulas, Presburger’s work on arithmetic, Kotarbiński’s semantical reism, and Tarski’s work on formal semantics and truth.

One of the representatives of this school was Stanisław Leśniewski (1886–1939) (Alfred Tarski, whose importance in twentieth century logic it is hard to overestimate, was his only PhD student). Leśniewski developed his system of foundations of mathematics as an alternative to the system of Principia Mathematica. He constructed three systems: Protothetic, which is his version of a generalized propositional calculus, his own (higher-order) logic of predication called Ontology, and a theory of parthood called Mereology.

This book is devoted to a presentation of Leśniewski’s achievements and their critical evaluation. I discuss his philosophical views, describe his systems and evaluate the role they can play in the foundations of mathematics. It was my purpose to focus on primary sources and present Leśniewski’s own views and results rather than those present in secondary literature. For this reason, later developments are not treated in detail but rather either mentioned in passing, or described in sections devoted to secondary literature included in some chapters. The intended audience of this book includes philosophy majors, graduate students and professional philosophers interested in logic, mathematics and their philosophy and history.

"A theory of definitions which places the eliminability and conservativeness requirements on definitions is usually called the standard theory. We examine a persistent myth which credits this theory to Leśniewski, a Polish logician. After a brief survey of its origins, we show that the myth is highly dubious. First, no place in Leśniewski’s published or unpublished work is known where the standard conditions are discussed. Second, Leśniewski’s own logical theories allow for creative definitions. Third, Leśniewski’s celebrated ‘rules of definition’ lay merely syntactical restrictions on the form of definitions: they do not provide definitions with such meta-theoretical requirements as eliminability or conservativeness. On the positive side, we point out that among the Polish logicians, in the 1920s and 1930s, a study of these meta-theoretical conditions is more readily found in the works of Łukasiewicz and Ajdukiewicz."

"This paper examines relations between Reism, the metaphysical theory invented by Tadeusz Kotarbinski, and Lesniewski’s calculus of names. It is shown that Kotarbinski’s interpretation of common nouns as genuine names, i.e., names of things is essentially based on Lesniewski’s logical ideas. It is pointed out that Lesniewskian semantics offers better prospects for Nominalism than does semantics of the standard first-order predicate calculus."

This paper applies Lesniewski’s logical ideas to an analysis of the concept of being. The analysis follows the classical ontology which is based on a distinction of two concepts of being : being in the distributive sense and being in the collective sense. Now it is argued that Lesniewski’s ontology (calculus of names) is a much better device for analyzing being in the distributive sense than the standard first-order predicate logic. Moreover, basic intuition connected with the being in the collective sense are nicely captured by mereology.

RELATED PAGES

Stanislaw Lesniewski’s Logical Systems: Protothetic, Ontology, Mereology
Ontologists of the 19th and 20th Centuries

POLISH ONTOLOGISTS

- Kazimierz Twardowski on the Content and Object of Presentations
- Tadeusz Kotarbinski from Ontological Reism to Semantical Concretism
- Roman Suszko and the Non-Fregean Logics
- Roman Ingarden: Ontology as a Science on the Possible Ways of Existence
- Boguslaw Wolniewicz on the Formal Ontology of Situations
- Jerzy Perzanowski: Modal Logics, Ontology and Ontologics

Theory and History of Ontology by Raul Corazzon

<table>
<thead>
<tr>
<th>Privacy Policy</th>
<th>Pdf Version</th>
<th>Rss Feed</th>
</tr>
</thead>
</table>

Bibliography on the Logical Work of Stanislaw Lesniewski

http://www.ontology.co/biblio/lesniewski-biblio.htm